7. The Laplace transform

- the Laplace transform
- properties of the Laplace transform
- solving differential equations
- circuit analysis using Laplace transform

The Laplace transform

the Laplace transform of $x(t)$ is defined as

$$
\begin{equation*}
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{7.1}
\end{equation*}
$$

- variable s can be complex
- known as the bilateral or two-sided Laplace transform
- $x(t)$ is called the inverse Laplace transform of $X(s)$
- we use $x(t) \Longleftrightarrow X(s)$ to denote a Laplace transform pair

Region of convergence (ROC)

- the set of values of s for which the integral in Eq. (7.1) exists is called the region of convergence (ROC) for $X(s)$
- for a finite-duration, integrable signal $x_{f}(t)$, the ROC is the entire s-plane

Example 7.1

find the Laplace transform and the ROC for
(a) $x(t)=e^{-a t} u(t)$
(b) $x(t)=-e^{-a t} u(-t)$

Solution:

(a)

$$
X(s)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-(s+a) t} d t=-\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{0} ^{\infty}
$$

note that $t \rightarrow \infty$, the term $e^{-(s+a) t}$ does not necessarily vanish because s is complex; here we recall that for a complex number $z=\alpha+j \beta$

$$
e^{-z t}=e^{-(\alpha+j \beta) t}=e^{-\alpha t} e^{-j \beta t}
$$

we have $\left|e^{-j \beta t}\right|=1$ for any βt; therefore, as $t \rightarrow \infty, e^{-z t} \rightarrow 0$ only if $\alpha>0$, and $e^{-z t} \rightarrow \infty$ if $\alpha<0$
we conclude that

$$
\lim _{t \rightarrow \infty} e^{-(s+a) t}= \begin{cases}0 & \operatorname{Re}(s+a)>0 \\ \infty & \operatorname{Re}(s+a)<0\end{cases}
$$

hence,

$$
X(s)=\frac{1}{s+a} \quad \text { if } \quad \operatorname{Re} s>-a
$$

the ROC is $\operatorname{Re} s>-a$
(b)

$$
\begin{aligned}
X(s)=\int_{-\infty}^{\infty}-e^{-a t} u(-t) e^{-s t} d t & =-\int_{-\infty}^{0} e^{-(s+a) t} d t \\
& =\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{-\infty} ^{0}=\frac{1}{s+a} \quad \operatorname{Re} s<-a
\end{aligned}
$$

we see that $e^{-a t} u(t)$ and $-e^{-a t} u(-t)$ have identical $X(s)$ but different ROC

(b)

- for given $X(s)$, there may be more than one inverse transform, depending on the ROC; this increases the complexity in using the Laplace transform
- if we consider causal signals only, then there is a unique inverse transform of $X(s)=1 /(s+a)$, namely, $e^{-a t} u(t)$ and there is no need to worry about ROC

Unilateral Laplace transform

the unilateral Laplace transform $X(s)$ of a signal $x(t)$ is

$$
\begin{equation*}
X(s)=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t \tag{7.2}
\end{equation*}
$$

- the unilateral transform is the bilateral transform that deals with a subclass of signals starting at $t=0$ (causal signals)
- the 0^{-}in the lower limit means that even if $x(t)$ is discontinuous at $t=0$, we can start the integration prior to the discontinuity as long as the integral converges (impulse function)
- the unilateral Laplace transform of any signal is unique, that is, for a given $X(s)$, there is a unique inverse transform $x(t)$

Existence

the unilateral Laplace transform exists if there exists a real σ such that:

$$
\begin{equation*}
\int_{0^{-}}^{\infty}\left|x(t) e^{-\sigma t}\right| d t<\infty \tag{7.3}
\end{equation*}
$$

- if $|x(t)| \leq M e^{\sigma_{0} t}$ for some M and σ_{0}, then $X(s)$ exists for $\sigma>\sigma_{0}$
- $e^{t^{2}}$ grows at a rate faster than $e^{\sigma_{0} t}$; hence not Laplace-transformable

Abscissa of convergence: the smallest value of σ, denoted by σ_{0}, for which the integral in Eq. (7.3) is finite, is called the abscissa of convergence

- the ROC of $X(s)$ is $\operatorname{Re} s>\sigma_{0}$
- the abscissa of convergence for $e^{-a t} u(t)$ is $-a(\operatorname{ROC}$ is $\operatorname{Re} s>-a)$

Linearity

if

$$
x_{1}(t) \Longleftrightarrow X_{1}(s) \quad \text { and } \quad x_{2}(t) \Longleftrightarrow X_{2}(s)
$$

then

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t) \Longleftrightarrow a_{1} X_{1}(s)+a_{2} X_{2}(s)
$$

Proof: by definition,

$$
\begin{aligned}
\mathcal{L}\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] & =\int_{-\infty}^{\infty}\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] e^{-s t} d t \\
& =a_{1} \int_{-\infty}^{\infty} x_{1}(t) e^{-s t} d t+a_{2} \int_{-\infty}^{\infty} x_{2}(t) e^{-s t} d t \\
& =a_{1} X_{1}(s)+a_{2} X_{2}(s)
\end{aligned}
$$

Inverse Laplace transform

$$
x(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} X(s) e^{s t} d s
$$

- c is a constant chosen to ensure the convergence of the integral (7.1)
- the path of integration is along $c+j \omega$, with ω varying from $-\infty$ to ∞; moreover, the path of integration must lie in the ROC (or existence) for $X(s)$; for the signal $e^{-a t} u(t)$, this is possible if $c>-a$; one possible path of integration is shown (dotted) in the figure on slide 7.4
- integration in the complex plane is beyond the scope of this course

Notation: the Laplace and inverse Laplace operations are denoted by:

$$
X(s)=\mathcal{L}[x(t)] \quad \text { and } \quad x(t)=\mathcal{L}^{-1}[X(s)]
$$

- note that

$$
\mathcal{L}^{-1}\{\mathcal{L}[x(t)]\}=x(t) \quad \text { and } \quad \mathcal{L}\left\{\mathcal{L}^{-1}[X(s)]\right\}=X(s)
$$

Common Laplace transform pairs

$x(t)$	$X(s)$
$\delta(t)$	$\frac{1}{s}$
$u(t)$	$\frac{1}{s^{2}}$
$t u(t)$	$\frac{n!}{s^{n+1}}$
$t^{n} u(t)$	$\frac{1}{s-\lambda}$
$e^{\lambda t} u(t)$	$\frac{1}{(s-\lambda)^{2}}$
$t e^{\lambda t} u(t)$	$\frac{s}{s^{2}+b^{2}}$
$\cos (b t) u(t)$	$\frac{b}{s^{2}+b^{2}}$
$\sin (b t) u(t)$	

(see Laplace table for more pairs)

Finding inverse Laplace

we can easily find the inverse transforms from Laplace tables if we can obtain a partial-fraction expansion of $X(s)$

Partial fraction expansion: if $X(s)$ is as a rational function, then

$$
X(s)=\frac{P(s)}{Q(s)}=\frac{b_{0} s^{M}+b_{1} s^{M-1}+\cdots+b_{M-1} s+b_{M}}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{N}\right)}
$$

- values of s for which $X(s)=0$ (e.g., $P(s)=0$) are the zeros of $X(s)$
- the values of s for which $X(s) \rightarrow \infty$ (e.g., $Q(s)=0)$ are the poles of $X(s)$
- we can then further expand $X(s)$ using partial fraction expansion and find the inverse Laplace from the tables
- the ROC of unilateral transform is the region of the s-plane to the right of all the finite poles of the transform $X(s)$

Example 7.2

find the inverse unilateral Laplace transforms of
(a) $\frac{7 s-6}{s^{2}-s-6}$ (real distinct roots)
(b) $\frac{2 s^{2}+5}{s^{2}+3 s+2}$ (improper $M=N$)
(c) $\frac{6(s+34)}{s\left(s^{2}+10 s+34\right)}$ (complex distinct roots)
(d) $\frac{8 s+10}{(s+1)(s+2)^{3}}$ (repeated roots)

Solution: we need to expand these functions into partial fractions
(a)

$$
X(s)=\frac{7 s-6}{(s+2)(s-3)}=\frac{k_{1}}{s+2}+\frac{k_{2}}{s-3}
$$

we have

$$
\begin{aligned}
& k_{1}=\left.\frac{7 s-6}{(s+2)(s-3)}\right|_{s=-2}=\frac{-14-6}{-2-3}=4 \\
& k_{2}=\left.\frac{7 s-6}{(s+2)(s-3)}\right|_{s=3}=\frac{21-6}{3+2}=3
\end{aligned}
$$

therefore,

$$
X(s)=\frac{7 s-6}{(s+2)(s-3)}=\frac{4}{s+2}+\frac{3}{s-3}
$$

using the Laplace table (pair 5), we have

$$
x(t)=\mathcal{L}^{-1}\left(\frac{4}{s+2}+\frac{3}{s-3}\right)=\left(4 e^{-2 t}+3 e^{3 t}\right) u(t)
$$

(b) observe that $X(s)$ is an improper function with $M=N$; in this case, we can express $X(s)$ as:

$$
X(s)=\frac{2 s^{2}+5}{s^{2}+3 s+2}=\frac{2 s^{2}+5}{(s+1)(s+2)}=2+\frac{k_{1}}{s+1}+\frac{k_{2}}{s+2}
$$

where

$$
\begin{aligned}
& k_{1}=\left.\frac{2 s^{2}+5}{(s+7)(s+2)}\right|_{s=-1}=\frac{2+5}{-1+2}=7 \\
& k_{2}=\left.\frac{2 s^{2}+5}{(s+7)(s+2)}\right|_{s=-2}=\frac{8+5}{-2+1}=-13
\end{aligned}
$$

therefore,

$$
X(s)=2+\frac{7}{s+1}-\frac{13}{s+2}
$$

from Laplace table (pair 2 and 5), we have

$$
x(t)=2 \delta(t)+\left(7 e^{-t}-13 e^{-2 t}\right) u(t)
$$

(c)

$$
\begin{aligned}
X(s)=\frac{6(s+34)}{s\left(s^{2}+10 s+34\right)} & =\frac{6(s+34)}{s(s+5-j 3)(s+5+j 3)} \\
& =\frac{k_{1}}{s}+\frac{k_{2}}{s+5-j 3}+\frac{k_{2}^{*}}{s+5+j 3}
\end{aligned}
$$

the coefficients (k_{2} and k_{2}^{*}) of the conjugate terms must also be conjugate; we have $k_{1}=6$, and

$$
k_{2}=-3+j 4=5 e^{j 126.9^{\circ}}, \quad k_{2}^{*}=5 e^{-j 126.9^{\circ}}
$$

hence

$$
X(s)=\frac{6}{s}+\frac{5 e^{j 126.9^{\circ}}}{s+5-j 3}+\frac{5 e^{-j 126.9^{\circ}}}{s+5+j 3}
$$

from Laplace table (pairs 2 and 10b), we obtain

$$
x(t)=\left[6+10 e^{-5 t} \cos \left(3 t+126.9^{\circ}\right)\right] u(t)
$$

(c) Alternative approach: to avoid dealing with complex numbers, we can express $X(s)$ as:

$$
\begin{aligned}
X(s)=\frac{6(s+34)}{s\left(s^{2}+10 s+34\right)} & =\frac{k_{1}}{s}+\frac{A s+B}{s^{2}+10 s+34} \\
& =\frac{6}{s}+\frac{A s+B}{s^{2}+10 s+34}
\end{aligned}
$$

where $k_{1}=6$ is already determined from before; to determine A we can multiply both sides by s and then let $s \rightarrow \infty$:

$$
0=6+A \Longrightarrow A=-6
$$

therefore,

$$
\frac{6(s+34)}{s\left(s^{2}+10 s+34\right)}=\frac{6}{s}+\frac{-6 s+B}{s^{2}+10 s+34}
$$

to find B, we let s be any convenient value, say, $s=1$, to obtain

$$
\frac{210}{45}=6+\frac{B-6}{45} \Longrightarrow B=-54
$$

and

$$
X(s)=\frac{6}{s}+\frac{-6 s-54}{s^{2}+10 s+34}
$$

using table (pairs 2 and 10c) with $A=-6, B=-54, a=5, c=34$, $b=\sqrt{c-a^{2}}=3$, we have

$$
r=\sqrt{\frac{A^{2} c+B^{2}-2 A B a}{c-a^{2}}}=10 \quad \theta=\tan ^{-1} \frac{A a-B}{A \sqrt{c-a^{2}}}=126.9^{\circ}
$$

therefore,

$$
x(t)=\left[6+10 e^{-5 t} \cos \left(3 t+126.9^{\circ}\right)\right] u(t)
$$

(d)

$$
X(s)=\frac{8 s+10}{(s+1)(s+2)^{3}}=\frac{k_{1}}{s+1}+\frac{a_{0}}{(s+2)^{3}}+\frac{a_{1}}{(s+2)^{2}}+\frac{a_{2}}{s+2}
$$

where

$$
\begin{aligned}
& k_{1}=\left.\frac{8 s+10}{(s+1)(s+2)^{3}}\right|_{s=-1}=2 \\
& a_{0}=\left.\frac{8 s+10}{(s+1)(s+2)^{3}}\right|_{s=-2}=6 \\
& a_{1}=\left\{\frac{d}{d s}\left[\frac{8 s+10}{(s+1)(s+2)^{3}}\right]\right\}_{s=-2}=-2 \\
& a_{2}=\frac{1}{2}\left\{\frac{d^{2}}{d s^{2}}\left[\frac{8 s+10}{(s+1)(s+2)^{3}}\right]\right\}_{s=-2}=-2
\end{aligned}
$$

therefore,

$$
X(s)=\frac{2}{s+1}+\frac{6}{(s+2)^{3}}-\frac{2}{(s+2)^{2}}-\frac{2}{s+2}
$$

(d) Alternative approach: in this method, the simpler coefficients k_{1} and a_{0} are determined by the Heaviside "cover-up" procedure, as before; to determine the remaining coefficients, we use the clearing-fraction method:

$$
\frac{8 s+10}{(s+1)(s+2)^{3}}=\frac{2}{s+1}+\frac{6}{(s+2)^{3}}+\frac{a_{1}}{(s+2)^{2}}+\frac{a_{2}}{s+2}
$$

if we multiply both sides by s and then let $s \rightarrow \infty$, we eliminate a_{1} :

$$
0=2+a_{2} \Longrightarrow a_{2}=-2
$$

therefore,

$$
\frac{8 s+10}{(s+1)(s+2)^{3}}=\frac{2}{s+1}+\frac{6}{(s+2)^{3}}+\frac{a_{1}}{(s+2)^{2}}-\frac{2}{s+2}
$$

a_{1} can be determined by setting s equal to any convenient value, say, $s=0$:

$$
\frac{10}{8}=2+\frac{3}{4}+\frac{a_{1}}{4}-1 \Longrightarrow a_{1}=-2
$$

therefore, $X(s)=\frac{2}{s+1}+\frac{6}{(s+2)^{3}}-\frac{2}{(s+2)^{2}}-\frac{2}{s+2}$, and from table, we have

$$
x(t)=\left[2 e^{-t}+\left(3 t^{2}-2 t-2\right) e^{-2 t}\right] u(t)
$$

Example 7.3: improper

If $X_{1}(s)=P(s) / Q(s)$ is improper, where the order of $P(s)$ is greater than or equal to the order of $Q(s)$, then $P(s)$ must be divided by $Q(s)$ successively until the result has a remainder whose numerator is of order less than its denominator

Example

$$
X_{1}(s)=\frac{s^{3}+2 s^{2}+6 s+7}{s^{2}+s+5}
$$

we must perform the indicated division until we obtain a remainder whose numerator is of order less than its denominator; hence,

$$
X_{1}(s)=s+1+\frac{2}{s^{2}+s+5}
$$

Taking the inverse Laplace transform along with the differentiation theorem and the linearity theorem:

$$
X_{1}(t)=\frac{d \delta(t)}{d t}+\delta(t)+\mathscr{L}^{-1}\left[\frac{2}{s^{2}+s+5}\right]
$$

the inverse transform of $2 /\left(s^{2}+s+5\right)$ can be found using partial-fraction expansion

Example 7.4

use the MATLAB residue command and Laplace table, to determine the inverse Laplace transform of each of the following functions:
(a) $X_{a}(s)=\frac{2 s^{2}+5}{s^{2}+3 s+2}$
(b) $X_{b}(s)=\frac{2 s^{2}+7 s+4}{(s+1)(s+2)^{2}}$
(c) $X_{c}(s)=\frac{8 s^{2}+21 s+19}{(s+2)\left(s^{2}+s+7\right)}$

Solution:

(a) \gg num $=\left[\begin{array}{lll}2 & 0 & 5\end{array}\right] ;$ den $=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]$;
$\gg[r, p, k]=r e s i d u e(n u m, d e n)$
$r=-13$
7
$p=-2$
-1
$\mathrm{k}=2$
$X_{a}(s)=-13 /(s+2)+7 /(s+1)+2$ and
$x_{a}(t)=\left(-13 e^{-2 t}+7 e^{-t}\right) u(t)+2 \delta(t)$
(b) \gg num $=\left[\begin{array}{lll}2 & 7 & 4\end{array}\right] ; \operatorname{den}=\left[\operatorname{conv}\left(\left[\begin{array}{ll}1 & 1\end{array}\right], \operatorname{conv}\left(\left[\begin{array}{ll}1 & 2\end{array}\right],\left[\begin{array}{ll}1 & 2\end{array}\right]\right)\right)\right]$;
$\gg \mathrm{r}, \mathrm{p}, \mathrm{k}]=$ residue(num,den)
$r=3$
2
-1
$p=-2$
-2
-1
$\mathrm{k}=$ []
$X_{b}(s)=3 /(s+2)+2 /(s+2)^{2}-1 /(s+1)$ and
$x_{b}(t)=\left(3 e^{-2 t}+2 t e^{-2 t}-e^{-t}\right) u(t)$
(c) \gg num $=\left[\begin{array}{lll}8 & 21 & 19\end{array}\right] ;$ den $=\left[\operatorname{conv}\left(\left[\begin{array}{ll}1 & 2\end{array}\right],\left[\begin{array}{lll}1 & 1 & 7\end{array}\right]\right)\right]$;
>> [r, p, k]= residue(num,den)
$r=3.5000-0.48113 i$
3. $5000+0.48113 i$
1.0000
$p=-0.5000+2.5981 i$
-0.5000-2.5981i
-2.0000
$\mathrm{k}=$ []
>> ang $=\operatorname{angle}(r), \operatorname{mag}=\operatorname{abs}(r)$
ang $=-0.13661$
0.13661

0
$\mathrm{mag}=3.5329$
3.5329
1.0000

$$
X_{C}(s)=\frac{1}{s+2}+\frac{3.5329 e^{-j 0.13661}}{s+0.5-j 2.5981}+\frac{3.5329 e^{j 0.13661}}{s+0.5+j 2.5981}
$$

and

$$
x_{c}(t)=\left[e^{-2 t}+1.7665 e^{-0.5 t} \cos (2.5981 t-0.1366)\right] u(t)
$$

Finding the Laplace transform using Matlab

we can use MATLAB's symbolic math toolbox, determine the Laplace or inverse Laplace transform

Examples:

(a) the direct unilateral Laplace transform of $x_{a}(t)=\sin (a t)+\cos (b t)$

```
>> syms a b t; \(x_{-} a=\sin (a * t)+\cos (b * t)\);
```

>> X_a = laplace(x_a);
$X_{-} a=a /\left(a^{\wedge} 2+s^{\wedge} 2\right)+s /\left(b^{\wedge} 2+s^{\wedge} 2\right)$
we express in standard rational form

```
>> X_a = collect(X_a)
X_a \(=\left(a^{\wedge} 2 * s+a * b \wedge 2+a * s \wedge 2+s^{\wedge} 3\right) /\left(s^{\wedge} 4+\left(a^{\wedge} 2+b \wedge 2\right) * s^{\wedge} 2+a^{\wedge} 2 * b \wedge 2\right)\)
```

(b) the inverse unilateral Laplace transform of $X_{b}(s)=a s^{2} /\left(s^{2}+b^{2}\right)$

```
>> syms a b s; X_b = (a*s^2)/(s^2+b^2);
>> x_b = ilaplace(X_b)
\(\mathrm{x}_{-} \mathrm{b}=\mathrm{a}\) dirac(t) -a (b*sin(b*t)
```


Exercises

- by direct integration, find the Laplace transform and the ROC for $x(t)$

(a)

(b)

Answer: (a) $\frac{1}{s}\left(1-e^{-2 s}\right)$ for all s; (b) $\frac{1}{s}\left(1-e^{-2 s}\right) e^{-2 s}$ for all s

- use Laplace transform table to show that the Laplace transform of $10 e^{-3 t} \cos \left(4 t+53.13^{\circ}\right)$ is $(6 s-14) /\left(s^{2}+6 s+25\right)$
- find the inverse Laplace transform of the following:
(a) $\frac{s+17}{s^{2}+4 s-5}$
(b) $\frac{3 s-5}{(s+1)\left(s^{2}+2 s+5\right)}$
(c) $\frac{16 s+43}{(s-2)(s+3)^{2}}$

Answers:
(a) $\left(3 e^{t}-2 e^{-5 t}\right) u(t)$ (b) $\left[-2 e^{-t}+\frac{5}{2} e^{-t} \cos \left(2 t-36.87^{\circ}\right)\right] u(t)$
(c) $\left[3 e^{2 t}+(t-3) e^{-3 t}\right] u(t)$

Outline

- the Laplace transform
- properties of the Laplace transform
- solving differential equations
- circuit analysis using Laplace transform

Shifting

Time-shifting: if $x(t) \Longleftrightarrow X(s)$ then for $t_{0} \geq 0$

$$
x\left(t-t_{0}\right) \Longleftrightarrow X(s) e^{-s t_{0}}
$$

- here $x(t)$ is causal, and therefore, $x\left(t-t_{0}\right)$ starts at $t=t_{0}$ (we often avoid this ambiguity by considering $x(t) u(t))$
- holds only for positive t_{0} because if t_{0} were negative, the signal $x\left(t-t_{0}\right)$ may not be causal

Frequency-shifting: if $x(t) \Longleftrightarrow X(s)$ then

$$
x(t) e^{s_{0} t} \Longleftrightarrow X\left(s-s_{0}\right)
$$

Example 7.5

find the Laplace transform of $x(t)$ shown below

Solution: we can express the signal as:

$$
\begin{aligned}
x(t) & =(t-1)[u(t-1)-u(t-2)]+[u(t-2)-u(t-4)] \\
& =(t-1) u(t-1)-(t-1) u(t-2)+u(t-2)-u(t-4)
\end{aligned}
$$

we can rearrange the second term as

$$
(t-1) u(t-2)=(t-2+1) u(t-2)=(t-2) u(t-2)+u(t-2)
$$

hence,

$$
x(t)=(t-1) u(t-1)-(t-2) u(t-2)-u(t-4)
$$

application of the time-shifting property to $t u(t) \Longleftrightarrow 1 / s^{2}$ yields

$$
(t-1) u(t-1) \Longleftrightarrow \frac{1}{s^{2}} e^{-s} \quad \text { and } \quad(t-2) u(t-2) \Longleftrightarrow \frac{1}{s^{2}} e^{-2 s}
$$

also

$$
u(t) \Longleftrightarrow \frac{1}{s} \quad \text { and } \quad u(t-4) \Longleftrightarrow \frac{1}{s} e^{-4 s}
$$

therefore,

$$
X(s)=\frac{1}{s^{2}} e^{-s}-\frac{1}{s^{2}} e^{-2 s}-\frac{1}{s} e^{-4 s}
$$

Example 7.6

find the inverse Laplace transform of

$$
X(s)=\frac{s+3+5 e^{-2 s}}{(s+1)(s+2)}
$$

Solution: we have

$$
X(s)=\underbrace{\frac{s+3}{(s+1)(s+2)}}_{X_{1}(s)}+\underbrace{\frac{5 e^{-2 s}}{(s+1)(s+2)}}_{X_{2}(s) e^{-2 s}}
$$

where

$$
\begin{aligned}
& X_{1}(s)=\frac{s+3}{(s+1)(s+2)}=\frac{2}{s+1}-\frac{1}{s+2} \\
& X_{2}(s)=\frac{5}{(s+1)(s+2)}=\frac{5}{s+1}-\frac{5}{s+2}
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& x_{1}(t)=\left(2 e^{-t}-e^{-2 t}\right) u(t) \\
& x_{2}(t)=5\left(e^{-t}-e^{-2 t}\right) u(t)
\end{aligned}
$$

also, because

$$
X(s)=X_{1}(s)+X_{2}(s) e^{-2 s}
$$

we can write

$$
\begin{aligned}
x(t) & =x_{1}(t)+x_{2}(t-2) \\
& =\left(2 e^{-t}-e^{-2 t}\right) u(t)+5\left[e^{-(t-2)}-e^{-2(t-2)}\right] u(t-2)
\end{aligned}
$$

Differentiation

Time-differentiation: if $x(t) \Longleftrightarrow X(s)$ then

$$
\frac{d x(t)}{d t} \Longleftrightarrow s X(s)-x\left(0^{-}\right)
$$

repeated differentiation yields

$$
\begin{aligned}
\frac{d^{n} x(t)}{d t^{n}} & \Longleftrightarrow s^{n} X(s)-s^{n-1} x\left(0^{-}\right)-s^{n-2} \dot{x}\left(0^{-}\right)-\cdots-x^{(n-1)}\left(0^{-}\right) \\
& =s^{n} X(s)-\sum_{k=1}^{n} s^{n-k} x^{(k-1)}\left(0^{-}\right)
\end{aligned}
$$

Frequency-differentiation: if $x(t) \Longleftrightarrow X(s)$ then

$$
t^{n} x(t) \Longleftrightarrow(-1)^{n} \frac{d^{n}}{d s^{n}} X(s)
$$

Example 7.7

find the Laplace transform of the signal $x(t)$ shown below by using Laplace table and the time-differentiation and time-shifting properties

Solution: the derivative at a point of jump discontinuity is an impulse of strength equal to the amount of jump

therefore,

$$
\frac{d^{2} x(t)}{d t^{2}}=\delta(t)-3 \delta(t-2)+2 \delta(t-3)
$$

the Laplace transform of this equation yields

$$
\mathcal{L}\left(\frac{d^{2} x(t)}{d t^{2}}\right)=\mathcal{L}[\delta(t)-3 \delta(t-2)+2 \delta(t-3)]
$$

using the time-differentiation property, the time-shifting property, and the facts that $x\left(0^{-}\right)=\dot{x}\left(0^{-}\right)=0$, and $\delta(t) \Longleftrightarrow 1$, we obtain

$$
s^{2} X(s)-0-0=1-3 e^{-2 s}+2 e^{-3 s}
$$

thus,

$$
X(s)=\frac{1}{s^{2}}\left(1-3 e^{-2 s}+2 e^{-3 s}\right)
$$

Integration

Time-integration: if $x(t) \Longleftrightarrow X(s)$ then

$$
\int_{0^{-}}^{t} x(\tau) d \tau \Longleftrightarrow \frac{X(s)}{s}
$$

and

$$
\int_{-\infty}^{t} x(\tau) d \tau \Longleftrightarrow \frac{X(s)}{s}+\frac{\int_{-\infty}^{0^{-}} x(\tau) d \tau}{s}
$$

Frequency-integration: if $x(t) \Longleftrightarrow X(s)$ then

$$
\frac{x(t)}{t} \Longleftrightarrow \int_{s}^{\infty} X(u) d u
$$

Scaling and complex conjugation

the scaling property states that if $x(t) \Longleftrightarrow X(s)$, then for $a>0$

$$
x(a t) \Longleftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right)
$$

- time compression of a signal by a factor a causes expansion of its Laplace transform in the s scale by the same factor
- time expansion $x(t)$ causes compression of $X(s)$ by the same factor

Complex conjugation: if $x(t) \Longleftrightarrow X(s)$, then

$$
x^{*}(t) \Longleftrightarrow X^{*}\left(s^{*}\right)
$$

Convolution

let

$$
x_{1}(t) \Longleftrightarrow X_{1}(s) \quad \text { and } \quad x_{2}(t) \Longleftrightarrow X_{2}(s)
$$

Time-convolution

$$
x_{1}(t) * x_{2}(t) \Longleftrightarrow X_{1}(s) X_{2}(s)
$$

Frequency-convolution

$$
x_{1}(t) x_{2}(t) \Longleftrightarrow \frac{1}{2 \pi j}\left[X_{1}(s) * X_{2}(s)\right]
$$

Example 7.8

use the time-convolution property of the Laplace transform to determine

$$
c(t)=e^{a t} u(t) * e^{b t} u(t)
$$

Solution: using time-convolution property, we have

$$
C(s)=\frac{1}{(s-a)(s-b)}=\frac{1}{a-b}\left[\frac{1}{s-a}-\frac{1}{s-b}\right]
$$

the inverse transform of this equation yields

$$
c(t)=\frac{1}{a-b}\left(e^{a t}-e^{b t}\right) u(t)
$$

Initial and final value theorems

Initial value theorem

$$
x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s)
$$

- applies only if $X(s)$ is strictly proper $(M<N)$
- for $M \geq N, \lim _{s \rightarrow \infty} s X(s)$ does not exist; in such a case, we must express $X(s)$ as a polynomial in s plus a strictly proper fraction, where $M<N$

Final value theorem

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)
$$

- applies only if the poles of $X(s)$ are in the LHP (including $s=0$)
- If there is a pole at the origin, then $x(t)$ contains a constant term, and hence, $x(\infty)$ exists and is a constant

Example 7.9

determine the initial and final values of $y(t)$ if
(a) $Y(s)=\frac{10(2 s+3)}{s\left(s^{2}+2 s+5\right)}$
(b) $Y(s)=\frac{s^{3}+3 s^{2}+s+1}{s^{2}+2 s+1}$

Solution:

(a) directly applying the theorems:

$$
\begin{aligned}
& y\left(0^{+}\right)=\lim _{s \rightarrow \infty} s Y(s)=\lim _{s \rightarrow \infty} \frac{10(2 s+3)}{\left(s^{2}+2 s+5\right)}=0 \\
& y(\infty)=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} \frac{10(2 s+3)}{\left(s^{2}+2 s+5\right)}=6
\end{aligned}
$$

(b) here $M>N$, to use use the I.V.T, we write

$$
Y(s)=(s+1)-\frac{2 s}{s^{2}+2 s+1}
$$

the inverse transform of $s+1$ is $\dot{\delta}(t)+\delta(t)$, which are zero at $t=0^{+}$; hence:

$$
y\left(0^{+}\right)=\lim _{s \rightarrow \infty} \frac{-2 s^{2}}{s^{2}+2 s+1}=-2, \quad y(\infty)=\lim _{s \rightarrow 0} s Y(s)=0
$$

Exercises

- find the Laplace transform of the signal illustrated below

Answer: $\frac{1}{s^{2}}\left(1-3 e^{-2 s}+2 e^{-3 s}\right)$

- find the inverse Laplace transform of $X(s)=\frac{3 e^{-2 s}}{(s-1)(s+2)}$

Answer: $\left(e^{t-2}-e^{-2(t-2)}\right) u(t-2)$

Outline

- the Laplace transform
- properties of the Laplace transform
- solving differential equations
- circuit analysis using Laplace transform

Solving differential equations

- Laplace transform is a powerful tool to analyze of linear system dynamics
- using Laplace transform, the solution of the differential equation can be transformed into the solution of an algebraic equation
- using the Laplace transform we can solve differential equations knowing only initial conditions before the discontinuity 0^{-}
- directly solving using differential equations, we have to also know the initial conditions after the discontinuity 0^{+}

Example: use the Laplace transform to solve the second-order linear differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=\frac{d x(t)}{d t}+x(t)
$$

with initial conditions $y\left(0^{-}\right)=2$ and $\dot{y}\left(0^{-}\right)=1$ and the input $x(t)=e^{-4 t} u(t)$

Solution:

let $y(t) \Longleftrightarrow Y(s)$, then

$$
\begin{gathered}
\frac{d y(t)}{d t} \Longleftrightarrow s Y(s)-y\left(0^{-}\right)=s Y(s)-2 \\
\frac{d^{2} y(t)}{d t^{2}} \Longleftrightarrow s^{2} Y(s)-s y\left(0^{-}\right)-\dot{y}\left(0^{-}\right)=s^{2} Y(s)-2 s-1
\end{gathered}
$$

moreover, for $x(t)=e^{-4 t} u(t)$

$$
X(s)=\frac{1}{s+4} \quad \text { and } \quad \frac{d x(t)}{d t} \Longleftrightarrow s X(s)-x\left(0^{-}\right)=\frac{s}{s+4}-0=\frac{s}{s+4}
$$

taking the Laplace transform of the diff. equation:

$$
\left[s^{2} Y(s)-2 s-1\right]+5[s Y(s)-2]+6 Y(s)=\frac{s}{s+4}+\frac{1}{s+4}
$$

rearranging, we obtain

$$
\left(s^{2}+5 s+6\right) Y(s)-(2 s+11)=\frac{s+1}{s+4}
$$

therefore,

$$
Y(s)=\frac{2 s+11}{s^{2}+5 s+6}+\frac{s+1}{\left(s^{2}+5 s+6\right)(s+4)}=\frac{2 s^{2}+20 s+45}{(s+2)(s+3)(s+4)}
$$

expanding the right-hand side into partial fractions:

$$
Y(s)=\frac{13 / 2}{s+2}-\frac{3}{s+3}-\frac{3 / 2}{s+4}
$$

taking inverse Laplace transform:

$$
y(t)=\left(\frac{13}{2} e^{-2 t}-3 e^{-3 t}-\frac{3}{2} e^{-4 t}\right) u(t)
$$

Zero-input and zero-state components

- the initial conditions term in the response give rise to the zero-input response
- the input term give rise to the zero-state response

Example: in the previous example, we have

$$
\begin{aligned}
Y(s) & =\underbrace{\frac{2 s+11}{s^{2}+5 s+6}}_{\text {initial conditions term }}+\underbrace{\frac{s+1}{(s+4)\left(s^{2}+5 s+6\right)}}_{\text {input term }} \\
& =\left[\frac{7}{s+2}-\frac{5}{s+3}\right]+\left[\frac{-1 / 2}{s+2}+\frac{2}{s+3}-\frac{3 / 2}{s+4}\right]
\end{aligned}
$$

taking the inverse transform:

$$
y(t)=\underbrace{\left(7 e^{-2 t}-5 e^{-3 t}\right) u(t)}_{\mathrm{ZIR}}+\underbrace{\left(-\frac{1}{2} e^{-2 t}+2 e^{-3 t}-\frac{3}{2} e^{-4 t}\right) u(t)}_{\mathrm{ZSR}}
$$

Example 7.10

the switch is in the closed position for a long time before $t=0$, when it is opened instantaneously; find the inductor current $y(t)$ for $t \geq 0$

Solution: when the switch is in the closed position (for a long time), the inductor current is 2 amperes and the capacitor voltage is 10 volts; thus, $y\left(0^{-}\right)=2$ and $v_{C}\left(0^{-}\right)=10$
when the switch is opened, we get the circuit

notice that we represented the voltage source at $t \geq 0$ by the unit step $10 u(t)$ for $t>0$ after opening the switch
the loop equation of the circuit is

$$
\frac{d y(t)}{d t}+2 y(t)+5 \int_{-\infty}^{t} y(\tau) d \tau=10 u(t)
$$

if $y(t) \Longleftrightarrow Y(s)$ then

$$
\frac{d y(t)}{d t} \Longleftrightarrow s Y(s)-y\left(0^{-}\right)=s Y(s)-2
$$

and

$$
\int_{-\infty}^{t} y(\tau) d \tau \Longleftrightarrow \frac{Y(s)}{s}+\frac{\int_{-\infty}^{0^{-}} y(\tau) d \tau}{s}
$$

note that $(1 / C) \int_{-\infty}^{0^{-}} y(\tau) d \tau=v_{C}\left(0^{-}\right)$and thus:

$$
\int_{-\infty}^{0^{-}} y(\tau) d \tau=C v_{C}\left(0^{-}\right)=\frac{1}{5}(10)=2
$$

hence

$$
\int_{-\infty}^{t} y(\tau) d \tau \Longleftrightarrow \frac{Y(s)}{s}+\frac{2}{s}
$$

using these results, the Laplace transform the diff. equation is

$$
s Y(s)-2+2 Y(s)+\frac{5 Y(s)}{s}+\frac{10}{s}=\frac{10}{s}
$$

thus

$$
Y(s)=\frac{2 s}{s^{2}+2 s+5}
$$

to find the inverse Laplace transform of $Y(s)$, we use pair 10c in Laplace table with values $A=2, B=0, a=1$, and $c=5$:

$$
r=\sqrt{\frac{20}{4}}=\sqrt{5}, \quad b=\sqrt{c-a^{2}}=2 \quad \text { and } \quad \theta=\tan ^{-1}\left(\frac{2}{4}\right)=26.6^{\circ}
$$

therefore,

$$
y(t)=\sqrt{5} e^{-t} \cos \left(2 t+26.6^{\circ}\right) u(t)
$$

Exercise

- use the Laplace transform to solve the following differential equation for $y(t)$ if all initial conditions are zero

$$
\frac{d^{2} y}{d t^{2}}+12 \frac{d y}{d t}+32 y=32 u(t)
$$

Answer: $y(t)=\left(1-2 e^{-4 t}+e^{-8 t}\right) u(t)$

- use Laplace transform to solve

$$
\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=2 \frac{d x(t)}{d t}+x(t)
$$

for the input $x(t)=u(t)$; the initial conditions are $y\left(0^{-}\right)=1$ and $\dot{y}\left(0^{-}\right)=2$
Answer: $y(t)=\frac{1}{3}\left(1+9 e^{-t}-7 e^{-3 t}\right) u(t)$

Outline

- the Laplace transform
- properties of the Laplace transform
- solving differential equations
- circuit analysis using Laplace transform

Laplace representation of basic electric elements

Resistor

$$
v(t)=R i(t) \Longleftrightarrow V(s)=R I(s)
$$

Inductor

$$
v(t)=L \frac{d i(t)}{d t} \Longleftrightarrow V(s)=L s I(s)-L i\left(0^{-}\right)
$$

Capacitor

$$
i(t)=C \frac{d v(t)}{d t} \Longleftrightarrow V(s)=\frac{1}{C s} I(s)+\frac{v\left(0^{-}\right)}{s}
$$

Impedance: the impedance of an element is $Z=V(s) / I(s)$ for the element (under zero initial conditions)

- the impedance of a resistor of R is $Z=R$
- the impedance of an inductor of L is $Z=L s$
- the impedance of a capacitor C is $Z=1 / C s$

Kirchhoff's laws

Time domain

$$
\sum_{k=1}^{N} v_{k}(t)=0 \quad \text { and } \quad \sum_{k=1}^{M} i_{k}(t)=0
$$

- $v_{k}(t)(k=1,2, \ldots, N)$ are the voltages across N elements in a loop
- $i_{k}(t)(k=1,2, \ldots, M)$ are the M currents entering a node

Laplace domain

$$
\sum_{k=1}^{N} V_{k}(s)=0 \quad \text { and } \quad \sum_{k=1}^{M} I_{k}(s)=0
$$

- $V_{k}(s)$ and $V_{k}(s)$ are the Laplace transforms of $v_{k}(t)$ and $i_{k}(t)$
- we can treat the network as if it consisted of the "resistances" $R, L s, 1 / C s$

Illustrative example

the initial conditions $y\left(0^{-}\right)=2$ and $v_{C}\left(0^{-}\right)=10$
the total voltage in the loop is $(10 / s)+2-(10 / s)=2$, and the loop impedance is $(s+2+(5 / s))$; therefore,

$$
Y(s)=\frac{2}{s+2+5 / s}=\frac{2 s}{s^{2}+2 s+5}
$$

which matches our earlier result in slide 7.48

Example 7.11

find the loop current $i(t)$ in the circuit shown if all the initial conditions are zero
Solution: we first, we represent the circuit in the frequency domain:

total impedance in the loop is

$$
Z(s)=s+3+\frac{2}{s}=\frac{s^{2}+3 s+2}{s}
$$

the input voltage is $V(s)=10 / s$; therefore:

$$
\begin{aligned}
I(s)=\frac{V(s)}{Z(s)} & =\frac{10}{s^{2}+3 s+2} \\
& =\frac{10}{(s+1)(s+2)} \\
& =\frac{10}{s+1}-\frac{10}{s+2}
\end{aligned}
$$

taking the inverse transform, we arrive at

$$
i(t)=10\left(e^{-t}-e^{-2 t}\right) u(t)
$$

Example 7.12

the switch in the circuit is in the closed position for a long time before $t=0$, when it is opened instantaneously; find the currents $y_{1}(t)$ and $y_{2}(t)$ for $t \geq 0$

Solution: by inspection, the initial conditions are $v_{C}\left(0^{-}\right)=16$ and $y_{2}\left(0^{-}\right)=4$; thus for $t \geq 0$, the circuit in Laplace domain is

the loop equations can be written directly in the frequency domain as

$$
\begin{aligned}
\frac{Y_{1}(s)}{s}+\frac{1}{5}\left[Y_{1}(s)-Y_{2}(s)\right] & =\frac{4}{s} \\
-\frac{1}{5} Y_{1}(s)+\frac{6}{5} Y_{2}(s)+\frac{s}{2} Y_{2}(s) & =2
\end{aligned}
$$

solving, we get

$$
Y_{1}(s)=\frac{24(s+2)}{s^{2}+7 s+12}=\frac{24(s+2)}{(s+3)(s+4)}=\frac{-24}{s+3}+\frac{48}{s+4}
$$

and

$$
Y_{2}(s)=\frac{4(s+7)}{s^{2}+7 s+12}=\frac{16}{s+3}-\frac{12}{s+4}
$$

hence,

$$
\begin{aligned}
& y_{1}(t)=\left(-24 e^{-3 t}+48 e^{-4 t}\right) u(t) \\
& y_{2}(t)=\left(16 e^{-3 t}-12 e^{-4 t}\right) u(t)
\end{aligned}
$$

Alternative solution: we can also use Thévenin's theorem to compute $Y_{1}(s)$ and $Y_{2}(s)$; the previous circuit shows that the Thévenin impedance $Z(s)$ and the Thévenin source $V(s)$ (across right part of terminals $a b$) are

$$
Z(s)=\frac{\frac{1}{5}\left(\frac{s}{2}+1\right)}{\frac{1}{5}+\frac{s}{2}+1}=\frac{s+2}{5 s+12}, \quad V(s)=\frac{-\frac{1}{5}}{\frac{1}{5}+\frac{s}{2}+1} 2=\frac{-4}{5 s+12}
$$

the current $Y_{1}(s)$ is given by

$$
Y_{1}(s)=\frac{\frac{4}{s}-V(s)}{\frac{1}{s}+Z(s)}=\frac{24(s+2)}{s^{2}+7 s+12}
$$

which matches our previous result (we can determine $Y_{2}(s)$ in a similar manner)

Exercise

the input is switched on at $t=0$; the initial conditions are $y\left(0^{-}\right)=2$ amperes and $v_{C}\left(0^{-}\right)=50$ volts
find the loop current $y(t)$ and the capacitor voltage $v_{C}(t)$ for $t \geq 0$

Answer:

$$
\begin{aligned}
y(t) & =10 \sqrt{2} e^{-t} \cos \left(2 t+81.8^{\circ}\right) u(t) \\
v_{C}(t) & =\left[24+31.62 e^{-t} \cos \left(2 t-34.7^{\circ}\right)\right] u(t)
\end{aligned}
$$

References

Reference:

- B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 4 (4.1-4.4).

