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The Laplace transform

the Laplace transform of 𝑥(𝑡) is defined as

𝑋 (𝑠) =
∫ ∞

−∞
𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡 (7.1)

■ variable 𝑠 can be complex

■ known as the bilateral or two-sided Laplace transform

■ 𝑥(𝑡) is called the inverse Laplace transform of 𝑋 (𝑠)
■ we use 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) to denote a Laplace transform pair

Region of convergence (ROC)

■ the set of values of 𝑠 for which the integral in Eq. (7.1) exists is called the
region of convergence (ROC) for 𝑋 (𝑠)

■ for a finite-duration, integrable signal 𝑥 𝑓 (𝑡), the ROC is the entire 𝑠-plane
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Example 7.1

find the Laplace transform and the ROC for

(a) 𝑥(𝑡) = 𝑒−𝑎𝑡𝑢(𝑡)
(b) 𝑥(𝑡) = −𝑒−𝑎𝑡𝑢(−𝑡)

Solution:

(a)

𝑋 (𝑠) =
∫ ∞

−∞
𝑒−𝑎𝑡𝑢(𝑡)𝑒−𝑠𝑡𝑑𝑡 =

∫ ∞

0

𝑒−(𝑠+𝑎)𝑡𝑑𝑡 = − 1

𝑠 + 𝑎
𝑒−(𝑠+𝑎)𝑡

����∞
0

note that 𝑡 → ∞, the term 𝑒−(𝑠+𝑎)𝑡 does not necessarily vanish because 𝑠 is
complex; here we recall that for a complex number 𝑧 = 𝛼 + 𝑗 𝛽

𝑒−𝑧𝑡 = 𝑒−(𝛼+ 𝑗𝛽)𝑡 = 𝑒−𝛼𝑡𝑒− 𝑗𝛽𝑡

we have
��𝑒− 𝑗𝛽𝑡

�� = 1 for any 𝛽𝑡; therefore, as 𝑡 → ∞, 𝑒−𝑧𝑡 → 0 only if 𝛼 > 0,
and 𝑒−𝑧𝑡 → ∞ if 𝛼 < 0
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we conclude that

lim
𝑡→∞

𝑒−(𝑠+𝑎)𝑡 =

{
0 Re(𝑠 + 𝑎) > 0
∞ Re(𝑠 + 𝑎) < 0

hence,

𝑋 (𝑠) = 1

𝑠 + 𝑎
if Re 𝑠 > −𝑎

the ROC is Re 𝑠 > −𝑎
(b)

𝑋 (𝑠) =
∫ ∞

−∞
−𝑒−𝑎𝑡𝑢(−𝑡)𝑒−𝑠𝑡𝑑𝑡 = −

∫ 0

−∞
𝑒−(𝑠+𝑎)𝑡𝑑𝑡

=
1

𝑠 + 𝑎
𝑒−(𝑠+𝑎)𝑡

����0
−∞

=
1

𝑠 + 𝑎
Re 𝑠 < −𝑎
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we see that 𝑒−𝑎𝑡𝑢(𝑡) and −𝑒−𝑎𝑡𝑢(−𝑡) have identical 𝑋 (𝑠) but different ROC

■ for given 𝑋 (𝑠), there may be more than one inverse transform, depending on
the ROC; this increases the complexity in using the Laplace transform

■ if we consider causal signals only, then there is a unique inverse transform of
𝑋 (𝑠) = 1/(𝑠 + 𝑎), namely, 𝑒−𝑎𝑡𝑢(𝑡) and there is no need to worry about ROC
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Unilateral Laplace transform

the unilateral Laplace transform 𝑋 (𝑠) of a signal 𝑥(𝑡) is

𝑋 (𝑠) =
∫ ∞

0−
𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡 (7.2)

■ the unilateral transform is the bilateral transform that deals with a subclass of
signals starting at 𝑡 = 0 (causal signals)

■ the 0− in the lower limit means that even if 𝑥(𝑡) is discontinuous at 𝑡 = 0, we
can start the integration prior to the discontinuity as long as the integral
converges (impulse function)

■ the unilateral Laplace transform of any signal is unique, that is, for a given
𝑋 (𝑠), there is a unique inverse transform 𝑥(𝑡)
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Existence

the unilateral Laplace transform exists if there exists a real 𝜎 such that:∫ ∞

0−

��𝑥(𝑡)𝑒−𝜎𝑡
�� 𝑑𝑡 < ∞ (7.3)

■ if |𝑥(𝑡) | ≤ 𝑀𝑒𝜎0𝑡 for some 𝑀 and 𝜎0, then 𝑋 (𝑠) exists for 𝜎 > 𝜎0

■ 𝑒𝑡
2

grows at a rate faster than 𝑒𝜎0𝑡 ; hence not Laplace-transformable

Abscissa of convergence: the smallest value of 𝜎, denoted by 𝜎0, for which
the integral in Eq. (7.3) is finite, is called the abscissa of convergence

■ the ROC of 𝑋 (𝑠) is Re 𝑠 > 𝜎0

■ the abscissa of convergence for 𝑒−𝑎𝑡𝑢(𝑡) is −𝑎 (ROC is Re 𝑠 > −𝑎)
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Linearity

if

𝑥1 (𝑡) ⇐⇒ 𝑋1 (𝑠) and 𝑥2 (𝑡) ⇐⇒ 𝑋2 (𝑠)

then

𝑎1𝑥1 (𝑡) + 𝑎2𝑥2 (𝑡) ⇐⇒ 𝑎1𝑋1 (𝑠) + 𝑎2𝑋2 (𝑠)

Proof: by definition,

L [𝑎1𝑥1 (𝑡) + 𝑎2𝑥2 (𝑡)] =
∫ ∞

−∞
[𝑎1𝑥1 (𝑡) + 𝑎2𝑥2 (𝑡)] 𝑒−𝑠𝑡𝑑𝑡

= 𝑎1

∫ ∞

−∞
𝑥1 (𝑡)𝑒−𝑠𝑡𝑑𝑡 + 𝑎2

∫ ∞

−∞
𝑥2 (𝑡)𝑒−𝑠𝑡𝑑𝑡

= 𝑎1𝑋1 (𝑠) + 𝑎2𝑋2 (𝑠)
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Inverse Laplace transform

𝑥(𝑡) = 1

2𝜋 𝑗

∫ 𝑐+ 𝑗∞

𝑐− 𝑗∞
𝑋 (𝑠)𝑒𝑠𝑡𝑑𝑠

■ 𝑐 is a constant chosen to ensure the convergence of the integral (7.1)

■ the path of integration is along 𝑐 + 𝑗𝜔, with 𝜔 varying from −∞ to ∞;
moreover, the path of integration must lie in the ROC (or existence) for 𝑋 (𝑠);
for the signal 𝑒−𝑎𝑡𝑢(𝑡), this is possible if 𝑐 > −𝑎; one possible path of
integration is shown (dotted) in the figure on slide 7.4

■ integration in the complex plane is beyond the scope of this course

Notation: the Laplace and inverse Laplace operations are denoted by:

𝑋 (𝑠) = L[𝑥(𝑡)] and 𝑥(𝑡) = L−1 [𝑋 (𝑠)]

■ note that

L−1{L[𝑥(𝑡)]} = 𝑥(𝑡) and L
{
L−1 [𝑋 (𝑠)]

}
= 𝑋 (𝑠)
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Common Laplace transform pairs

𝑥(𝑡) 𝑋 (𝑠)

𝛿(𝑡) 1

𝑢(𝑡) 1

𝑠

𝑡𝑢(𝑡) 1

𝑠2

𝑡𝑛𝑢(𝑡) 𝑛!
𝑠𝑛+1

𝑒_𝑡𝑢(𝑡) 1

𝑠 − _

𝑡𝑒_𝑡𝑢(𝑡) 1

(𝑠 − _)2

cos(𝑏𝑡)𝑢(𝑡) 𝑠

𝑠2 + 𝑏2

sin(𝑏𝑡)𝑢(𝑡) 𝑏

𝑠2 + 𝑏2

(see Laplace table for more pairs)
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Finding inverse Laplace

we can easily find the inverse transforms from Laplace tables if we can obtain a
partial-fraction expansion of 𝑋 (𝑠)

Partial fraction expansion: if 𝑋 (𝑠) is as a rational function, then

𝑋 (𝑠) = 𝑃(𝑠)
𝑄(𝑠) =

𝑏0𝑠
𝑀 + 𝑏1𝑠

𝑀−1 + · · · + 𝑏𝑀−1𝑠 + 𝑏𝑀

(𝑠 − 𝑝1) (𝑠 − 𝑝2) . . . (𝑠 − 𝑝𝑁 )

■ values of 𝑠 for which 𝑋 (𝑠) = 0 (e.g., 𝑃(𝑠) = 0) are the zeros of 𝑋 (𝑠)
■ the values of 𝑠 for which 𝑋 (𝑠) → ∞ (e.g., 𝑄(𝑠) = 0) are the poles of 𝑋 (𝑠)
■ we can then further expand 𝑋 (𝑠) using partial fraction expansion and find the

inverse Laplace from the tables

■ the ROC of unilateral transform is the region of the 𝑠-plane to the right of all
the finite poles of the transform 𝑋 (𝑠)
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Example 7.2

find the inverse unilateral Laplace transforms of

(a)
7𝑠 − 6

𝑠2 − 𝑠 − 6
(real distinct roots)

(b)
2𝑠2 + 5

𝑠2 + 3𝑠 + 2
(improper 𝑀 = 𝑁)

(c)
6(𝑠 + 34)

𝑠 (𝑠2 + 10𝑠 + 34) (complex distinct roots)

(d)
8𝑠 + 10

(𝑠 + 1) (𝑠 + 2)3 (repeated roots)
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Solution: we need to expand these functions into partial fractions

(a)

𝑋 (𝑠) = 7𝑠 − 6

(𝑠 + 2) (𝑠 − 3) =
𝑘1

𝑠 + 2
+ 𝑘2

𝑠 − 3

we have

𝑘1 =
7𝑠 − 6

���(𝑠 + 2) (𝑠 − 3)

����
𝑠=−2

=
−14 − 6

−2 − 3
= 4

𝑘2 =
7𝑠 − 6

(𝑠 + 2)����(𝑠 − 3)

����
𝑠=3

=
21 − 6

3 + 2
= 3

therefore,

𝑋 (𝑠) = 7𝑠 − 6

(𝑠 + 2) (𝑠 − 3) =
4

𝑠 + 2
+ 3

𝑠 − 3

using the Laplace table (pair 5), we have

𝑥(𝑡) = L−1
(

4

𝑠 + 2
+ 3

𝑠 − 3

)
=
(
4𝑒−2𝑡 + 3𝑒3𝑡

)
𝑢(𝑡)
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(b) observe that 𝑋 (𝑠) is an improper function with 𝑀 = 𝑁 ; in this case, we can
express 𝑋 (𝑠) as:

𝑋 (𝑠) = 2𝑠2 + 5

𝑠2 + 3𝑠 + 2
=

2𝑠2 + 5

(𝑠 + 1) (𝑠 + 2) = 2 + 𝑘1

𝑠 + 1
+ 𝑘2

𝑠 + 2

where

𝑘1 =
2𝑠2 + 5

���(𝑠 + 1) (𝑠 + 2)

����
𝑠=−1

=
2 + 5

−1 + 2
= 7

𝑘2 =
2𝑠2 + 5

���(𝑠 + 1) (𝑠 + 2)

����
𝑠=−2

=
8 + 5

−2 + 1
= −13

therefore,

𝑋 (𝑠) = 2 + 7

𝑠 + 1
− 13

𝑠 + 2

from Laplace table (pair 2 and 5), we have

𝑥(𝑡) = 2𝛿(𝑡) +
(
7𝑒−𝑡 − 13𝑒−2𝑡

)
𝑢(𝑡)
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(c)

𝑋 (𝑠) = 6(𝑠 + 34)
𝑠 (𝑠2 + 10𝑠 + 34) =

6(𝑠 + 34)
𝑠(𝑠 + 5 − 𝑗3) (𝑠 + 5 + 𝑗3)

=
𝑘1

𝑠
+ 𝑘2

𝑠 + 5 − 𝑗3
+

𝑘∗2
𝑠 + 5 + 𝑗3

the coefficients (𝑘2 and 𝑘∗2) of the conjugate terms must also be conjugate;
we have 𝑘1 = 6, and

𝑘2 = −3 + 𝑗4 = 5𝑒 𝑗126.9◦ , 𝑘∗2 = 5𝑒− 𝑗126.9◦

hence

𝑋 (𝑠) = 6

𝑠
+ 5𝑒 𝑗126.9◦

𝑠 + 5 − 𝑗3
+ 5𝑒− 𝑗126.9◦

𝑠 + 5 + 𝑗3

from Laplace table (pairs 2 and 10b), we obtain

𝑥(𝑡) =
[
6 + 10𝑒−5𝑡 cos (3𝑡 + 126.9◦)

]
𝑢(𝑡)
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(c) Alternative approach: to avoid dealing with complex numbers, we can express
𝑋 (𝑠) as:

𝑋 (𝑠) = 6(𝑠 + 34)
𝑠 (𝑠2 + 10𝑠 + 34) =

𝑘1

𝑠
+ 𝐴𝑠 + 𝐵

𝑠2 + 10𝑠 + 34

=
6

𝑠
+ 𝐴𝑠 + 𝐵

𝑠2 + 10𝑠 + 34

where 𝑘1 = 6 is already determined from before; to determine 𝐴 we can
multiply both sides by 𝑠 and then let 𝑠 → ∞:

0 = 6 + 𝐴 =⇒ 𝐴 = −6

therefore,

6(𝑠 + 34)
𝑠 (𝑠2 + 10𝑠 + 34) =

6

𝑠
+ −6𝑠 + 𝐵

𝑠2 + 10𝑠 + 34
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to find 𝐵, we let 𝑠 be any convenient value, say, 𝑠 = 1, to obtain

210

45
= 6 + 𝐵 − 6

45
=⇒ 𝐵 = −54

and

𝑋 (𝑠) = 6

𝑠
+ −6𝑠 − 54

𝑠2 + 10𝑠 + 34

using table (pairs 2 and 10c) with 𝐴 = −6, 𝐵 = −54, 𝑎 = 5, 𝑐 = 34,
𝑏 =

√
𝑐 − 𝑎2 = 3, we have

𝑟 =

√︂
𝐴2𝑐 + 𝐵2 − 2𝐴𝐵𝑎

𝑐 − 𝑎2
= 10 \ = tan−1 𝐴𝑎 − 𝐵

𝐴
√
𝑐 − 𝑎2

= 126.9◦

therefore,

𝑥(𝑡) =
[
6 + 10𝑒−5𝑡 cos (3𝑡 + 126.9◦)

]
𝑢(𝑡)
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(d)

𝑋 (𝑠) = 8𝑠 + 10

(𝑠 + 1) (𝑠 + 2)3 =
𝑘1

𝑠 + 1
+ 𝑎0

(𝑠 + 2)3 + 𝑎1

(𝑠 + 2)2 + 𝑎2

𝑠 + 2

where

𝑘1 =
8𝑠 + 10

���(𝑠 + 1) (𝑠 + 2)3

����
𝑠=−1

= 2

𝑎0 =
8𝑠 + 10

(𝑠 + 1)����(𝑠 + 2)3

����
𝑠=−2

= 6

𝑎1 =

{
𝑑

𝑑𝑠

[
8𝑠 + 10

(𝑠 + 1)����(𝑠 + 2)3
]}

𝑠=−2
= −2

𝑎2 =
1

2

{
𝑑2

𝑑𝑠2

[
8𝑠 + 10

(𝑠 + 1)����(𝑠 + 2)3
]}

𝑠=−2
= −2

therefore,

𝑋 (𝑠) = 2

𝑠 + 1
+ 6

(𝑠 + 2)3 − 2

(𝑠 + 2)2 − 2

𝑠 + 2
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(d) Alternative approach: in this method, the simpler coefficients 𝑘1 and 𝑎0 are
determined by the Heaviside “cover-up” procedure, as before; to determine
the remaining coefficients, we use the clearing-fraction method:

8𝑠 + 10

(𝑠 + 1) (𝑠 + 2)3 =
2

𝑠 + 1
+ 6

(𝑠 + 2)3 + 𝑎1

(𝑠 + 2)2 + 𝑎2

𝑠 + 2

if we multiply both sides by 𝑠 and then let 𝑠 → ∞, we eliminate 𝑎1:

0 = 2 + 𝑎2 =⇒ 𝑎2 = −2

therefore,

8𝑠 + 10

(𝑠 + 1) (𝑠 + 2)3 =
2

𝑠 + 1
+ 6

(𝑠 + 2)3 + 𝑎1

(𝑠 + 2)2 − 2

𝑠 + 2

𝑎1 can be determined by setting 𝑠 equal to any convenient value, say, 𝑠 = 0:

10
8 = 2 + 3

4 + 𝑎1

4 − 1 =⇒ 𝑎1 = −2

therefore, 𝑋 (𝑠) = 2
𝑠+1 + 6

(𝑠+2)3 − 2
(𝑠+2)2 − 2

𝑠+2 , and from table, we have

𝑥(𝑡) =
[
2𝑒−𝑡 +

(
3𝑡2 − 2𝑡 − 2

)
𝑒−2𝑡

]
𝑢(𝑡)
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Example 7.3: improper

If 𝑋1 (𝑠) = 𝑃(𝑠)/𝑄(𝑠) is improper, where the order of 𝑃(𝑠) is greater than or
equal to the order of 𝑄(𝑠), then 𝑃(𝑠) must be divided by 𝑄(𝑠) successively until
the result has a remainder whose numerator is of order less than its denominator

Example

𝑋1 (𝑠) =
𝑠3 + 2𝑠2 + 6𝑠 + 7

𝑠2 + 𝑠 + 5
we must perform the indicated division until we obtain a remainder whose
numerator is of order less than its denominator; hence,

𝑋1 (𝑠) = 𝑠 + 1 + 2

𝑠2 + 𝑠 + 5

Taking the inverse Laplace transform along with the differentiation theorem and
the linearity theorem:

𝑋1 (𝑡) =
𝑑𝛿(𝑡)
𝑑𝑡

+ 𝛿(𝑡) +ℒ
−1

[
2

𝑠2 + 𝑠 + 5

]
the inverse transform of 2/

(
𝑠2 + 𝑠 + 5

)
can be found using partial-fraction

expansion
the Laplace transform 7.20



Example 7.4

use the MATLAB residue command and Laplace table, to determine the inverse
Laplace transform of each of the following functions:

(a) 𝑋𝑎 (𝑠) =
2𝑠2 + 5

𝑠2 + 3𝑠 + 2

(b) 𝑋𝑏 (𝑠) =
2𝑠2 + 7𝑠 + 4

(𝑠 + 1) (𝑠 + 2)2

(c) 𝑋𝑐 (𝑠) =
8𝑠2 + 21𝑠 + 19

(𝑠 + 2) (𝑠2 + 𝑠 + 7)
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Solution:
(a) >> num = [2 0 5]; den = [1 3 2];

>> [r, p, k] = residue(num,den)

r = -13

7

p = -2

-1

k = 2

𝑋𝑎 (𝑠) = −13/(𝑠 + 2) + 7/(𝑠 + 1) + 2 and
𝑥𝑎 (𝑡) =

(
−13𝑒−2𝑡 + 7𝑒−𝑡

)
𝑢(𝑡) + 2𝛿(𝑡)

(b) >> num = [2 7 4]; den = [conv([1 1],conv([1 2],[1 2]))];

>> [r, p, k] = residue(num,den)

r = 3

2

-1

p = -2

-2

-1

k = []

𝑋𝑏 (𝑠) = 3/(𝑠 + 2) + 2/(𝑠 + 2)2 − 1/(𝑠 + 1) and
𝑥𝑏 (𝑡) =

(
3𝑒−2𝑡 + 2𝑡𝑒−2𝑡 − 𝑒−𝑡

)
𝑢(𝑡)
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(c) >> num = [8 21 19]; den = [conv([1 2],[1 1 7])];

>> [r, p, k]= residue(num,den)

r = 3.5000-0.48113i

3.5000+0.48113i

1.0000

p = -0.5000+2.5981i

-0.5000-2.5981i

-2.0000

k = []

>> ang = angle(r), mag = abs(r)

ang = -0.13661

0.13661

0

mag = 3.5329

3.5329

1.0000

𝑋𝑐 (𝑠) =
1

𝑠 + 2
+ 3.5329𝑒− 𝑗0.13661

𝑠 + 0.5 − 𝑗2.5981
+ 3.5329𝑒 𝑗0.13661

𝑠 + 0.5 + 𝑗2.5981

and

𝑥𝑐 (𝑡) =
[
𝑒−2𝑡 + 1.7665𝑒−0.5𝑡 cos(2.5981𝑡 − 0.1366)

]
𝑢(𝑡)
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Finding the Laplace transform using Matlab

we can use MATLAB’s symbolic math toolbox, determine the Laplace or inverse
Laplace transform

Examples:

(a) the direct unilateral Laplace transform of 𝑥𝑎 (𝑡) = sin(𝑎𝑡) + cos(𝑏𝑡)
>> syms a b t; x_a = sin(a*t)+cos(b*t);

>> X_a = laplace(x_a);

X_a = a/(a^2 + s^2) + s/(b^2 + s^2)

we express in standard rational form

>> X_a = collect(X_a)

X_a = (a^2*s+a*b^2+a*s^2+s^3)/(s^4+(a^2 + b^2)*s^2+a^2*b^2)

(b) the inverse unilateral Laplace transform of 𝑋𝑏 (𝑠) = 𝑎𝑠2/
(
𝑠2 + 𝑏2

)
>> syms a b s; X_b = (a*s^2)/(s^2+b^2);

>> x_b = ilaplace(X_b)

x_b = a*dirac(t) - a*b*sin(b*t)
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Exercises

■ by direct integration, find the Laplace transform and the ROC for 𝑥(𝑡)

Answer: (a) 1
𝑠 (1 − 𝑒−2𝑠) for all 𝑠; (b) 1

𝑠 (1 − 𝑒−2𝑠)𝑒−2𝑠 for all 𝑠

■ use Laplace transform table to show that the Laplace transform of
10𝑒−3𝑡 cos (4𝑡 + 53.13◦) is (6𝑠 − 14)/

(
𝑠2 + 6𝑠 + 25

)
■ find the inverse Laplace transform of the following:

(a)
𝑠 + 17

𝑠2 + 4𝑠 − 5

(b)
3𝑠 − 5

(𝑠 + 1)
(
𝑠2 + 2𝑠 + 5

)
(c)

16𝑠 + 43

(𝑠 − 2) (𝑠 + 3)2
Answers:
(a) (3𝑒𝑡 − 2𝑒−5𝑡 )𝑢(𝑡) (b) [−2𝑒−𝑡 + 5

2 𝑒
−𝑡 cos(2𝑡 − 36.87◦)]𝑢(𝑡)

(c) [3𝑒2𝑡 + (𝑡 − 3)𝑒−3𝑡 ]𝑢(𝑡)
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Shifting

Time-shifting: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) then for 𝑡0 ≥ 0

𝑥 (𝑡 − 𝑡0) ⇐⇒ 𝑋 (𝑠)𝑒−𝑠𝑡0

■ here 𝑥(𝑡) is causal, and therefore, 𝑥 (𝑡 − 𝑡0) starts at 𝑡 = 𝑡0 (we often avoid
this ambiguity by considering 𝑥(𝑡)𝑢(𝑡))

■ holds only for positive 𝑡0 because if 𝑡0 were negative, the signal 𝑥 (𝑡 − 𝑡0) may
not be causal

Frequency-shifting: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) then

𝑥(𝑡)𝑒𝑠0𝑡 ⇐⇒ 𝑋 (𝑠 − 𝑠0)
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Example 7.5

find the Laplace transform of 𝑥(𝑡) shown below

Solution: we can express the signal as:

𝑥(𝑡) = (𝑡 − 1) [𝑢(𝑡 − 1) − 𝑢(𝑡 − 2)] + [𝑢(𝑡 − 2) − 𝑢(𝑡 − 4)]
= (𝑡 − 1)𝑢(𝑡 − 1) − (𝑡 − 1)𝑢(𝑡 − 2) + 𝑢(𝑡 − 2) − 𝑢(𝑡 − 4)

we can rearrange the second term as

(𝑡 − 1)𝑢(𝑡 − 2) = (𝑡 − 2 + 1)𝑢(𝑡 − 2) = (𝑡 − 2)𝑢(𝑡 − 2) + 𝑢(𝑡 − 2)

hence,

𝑥(𝑡) = (𝑡 − 1)𝑢(𝑡 − 1) − (𝑡 − 2)𝑢(𝑡 − 2) − 𝑢(𝑡 − 4)
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application of the time-shifting property to 𝑡𝑢(𝑡) ⇐⇒ 1/𝑠2 yields

(𝑡 − 1)𝑢(𝑡 − 1) ⇐⇒ 1

𝑠2
𝑒−𝑠 and (𝑡 − 2)𝑢(𝑡 − 2) ⇐⇒ 1

𝑠2
𝑒−2𝑠

also

𝑢(𝑡) ⇐⇒ 1

𝑠
and 𝑢(𝑡 − 4) ⇐⇒ 1

𝑠
𝑒−4𝑠

therefore,

𝑋 (𝑠) = 1

𝑠2
𝑒−𝑠 − 1

𝑠2
𝑒−2𝑠 − 1

𝑠
𝑒−4𝑠
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Example 7.6

find the inverse Laplace transform of

𝑋 (𝑠) = 𝑠 + 3 + 5𝑒−2𝑠

(𝑠 + 1) (𝑠 + 2)

Solution: we have

𝑋 (𝑠) = 𝑠 + 3

(𝑠 + 1) (𝑠 + 2)︸            ︷︷            ︸
𝑋1 (𝑠)

+ 5𝑒−2𝑠

(𝑠 + 1) (𝑠 + 2)︸            ︷︷            ︸
𝑋2 (𝑠)𝑒−2𝑠

where

𝑋1 (𝑠) =
𝑠 + 3

(𝑠 + 1) (𝑠 + 2) =
2

𝑠 + 1
− 1

𝑠 + 2

𝑋2 (𝑠) =
5

(𝑠 + 1) (𝑠 + 2) =
5

𝑠 + 1
− 5

𝑠 + 2
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therefore,

𝑥1 (𝑡) =
(
2𝑒−𝑡 − 𝑒−2𝑡

)
𝑢(𝑡)

𝑥2 (𝑡) = 5
(
𝑒−𝑡 − 𝑒−2𝑡

)
𝑢(𝑡)

also, because

𝑋 (𝑠) = 𝑋1 (𝑠) + 𝑋2 (𝑠)𝑒−2𝑠

we can write

𝑥(𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡 − 2)

=
(
2𝑒−𝑡 − 𝑒−2𝑡

)
𝑢(𝑡) + 5

[
𝑒−(𝑡−2) − 𝑒−2(𝑡−2)

]
𝑢(𝑡 − 2)
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Differentiation

Time-differentiation: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) then

𝑑𝑥(𝑡)
𝑑𝑡

⇐⇒ 𝑠𝑋 (𝑠) − 𝑥 (0−)

repeated differentiation yields

𝑑𝑛𝑥(𝑡)
𝑑𝑡𝑛

⇐⇒ 𝑠𝑛𝑋 (𝑠) − 𝑠𝑛−1𝑥 (0−) − 𝑠𝑛−2 ¤𝑥 (0−) − · · · − 𝑥 (𝑛−1) (0−)

= 𝑠𝑛𝑋 (𝑠) −
𝑛∑︁

𝑘=1

𝑠𝑛−𝑘𝑥 (𝑘−1) (0−)

Frequency-differentiation: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) then

𝑡𝑛𝑥(𝑡) ⇐⇒ (−1)𝑛 𝑑𝑛

𝑑𝑠𝑛
𝑋 (𝑠)
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Example 7.7

find the Laplace transform of the signal 𝑥(𝑡) shown below by using Laplace table
and the time-differentiation and time-shifting properties

Solution: the derivative at a point of jump discontinuity is an impulse of strength
equal to the amount of jump
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therefore,

𝑑2𝑥(𝑡)
𝑑𝑡2

= 𝛿(𝑡) − 3𝛿(𝑡 − 2) + 2𝛿(𝑡 − 3)

the Laplace transform of this equation yields

L
(
𝑑2𝑥(𝑡)
𝑑𝑡2

)
= L[𝛿(𝑡) − 3𝛿(𝑡 − 2) + 2𝛿(𝑡 − 3)]

using the time-differentiation property, the time-shifting property, and the facts
that 𝑥 (0−) = ¤𝑥 (0−) = 0, and 𝛿(𝑡) ⇐⇒ 1, we obtain

𝑠2𝑋 (𝑠) − 0 − 0 = 1 − 3𝑒−2𝑠 + 2𝑒−3𝑠

thus,

𝑋 (𝑠) = 1

𝑠2

(
1 − 3𝑒−2𝑠 + 2𝑒−3𝑠

)
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Integration

Time-integration: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) then∫ 𝑡

0−
𝑥(𝜏)𝑑𝜏 ⇐⇒ 𝑋 (𝑠)

𝑠

and ∫ 𝑡

−∞
𝑥(𝜏)𝑑𝜏 ⇐⇒ 𝑋 (𝑠)

𝑠
+
∫ 0−

−∞ 𝑥(𝜏)𝑑𝜏
𝑠

Frequency-integration: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠) then

𝑥(𝑡)
𝑡

⇐⇒
∫ ∞

𝑠

𝑋 (𝑢)𝑑𝑢
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Scaling and complex conjugation

the scaling property states that if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠), then for 𝑎 > 0

𝑥(𝑎𝑡) ⇐⇒ 1

𝑎
𝑋

( 𝑠
𝑎

)
■ time compression of a signal by a factor a causes expansion of its Laplace

transform in the 𝑠 scale by the same factor

■ time expansion 𝑥(𝑡) causes compression of 𝑋 (𝑠) by the same factor

Complex conjugation: if 𝑥(𝑡) ⇐⇒ 𝑋 (𝑠), then

𝑥∗ (𝑡) ⇐⇒ 𝑋∗ (𝑠∗)
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Convolution

let

𝑥1 (𝑡) ⇐⇒ 𝑋1 (𝑠) and 𝑥2 (𝑡) ⇐⇒ 𝑋2 (𝑠)

Time-convolution

𝑥1 (𝑡) ∗ 𝑥2 (𝑡) ⇐⇒ 𝑋1 (𝑠)𝑋2 (𝑠)

Frequency-convolution

𝑥1 (𝑡)𝑥2 (𝑡) ⇐⇒ 1

2𝜋 𝑗
[𝑋1 (𝑠) ∗ 𝑋2 (𝑠)]
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Example 7.8

use the time-convolution property of the Laplace transform to determine

𝑐(𝑡) = 𝑒𝑎𝑡𝑢(𝑡) ∗ 𝑒𝑏𝑡𝑢(𝑡)

Solution: using time-convolution property, we have

𝐶 (𝑠) = 1

(𝑠 − 𝑎) (𝑠 − 𝑏) =
1

𝑎 − 𝑏

[
1

𝑠 − 𝑎
− 1

𝑠 − 𝑏

]
the inverse transform of this equation yields

𝑐(𝑡) = 1

𝑎 − 𝑏

(
𝑒𝑎𝑡 − 𝑒𝑏𝑡

)
𝑢(𝑡)
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Initial and final value theorems

Initial value theorem

𝑥
(
0+
)
= lim

𝑠→∞
𝑠𝑋 (𝑠)

■ applies only if 𝑋 (𝑠) is strictly proper (𝑀 < 𝑁)
■ for 𝑀 ≥ 𝑁, lim𝑠→∞ 𝑠𝑋 (𝑠) does not exist; in such a case, we must express
𝑋 (𝑠) as a polynomial in 𝑠 plus a strictly proper fraction, where 𝑀 < 𝑁

Final value theorem
lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0

𝑠𝑋 (𝑠)

■ applies only if the poles of 𝑋 (𝑠) are in the LHP (including 𝑠 = 0)

■ If there is a pole at the origin, then 𝑥(𝑡) contains a constant term, and hence,
𝑥(∞) exists and is a constant
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Example 7.9

determine the initial and final values of 𝑦(𝑡) if

(a) 𝑌 (𝑠) = 10(2𝑠 + 3)
𝑠(𝑠2 + 2𝑠 + 5) (b) 𝑌 (𝑠) = 𝑠3 + 3𝑠2 + 𝑠 + 1

𝑠2 + 2𝑠 + 1

Solution:
(a) directly applying the theorems:

𝑦(0+) = lim
𝑠→∞

𝑠𝑌 (𝑠) = lim
𝑠→∞

10(2𝑠 + 3)
(𝑠2 + 2𝑠 + 5) = 0

𝑦(∞) = lim
𝑠→0

𝑠𝑌 (𝑠) = lim
𝑠→0

10(2𝑠 + 3)
(𝑠2 + 2𝑠 + 5) = 6

(b) here 𝑀 > 𝑁 , to use use the I.V.T, we write

𝑌 (𝑠) = (𝑠 + 1) − 2𝑠

𝑠2 + 2𝑠 + 1

the inverse transform of 𝑠 + 1 is ¤𝛿(𝑡) + 𝛿(𝑡), which are zero at 𝑡 = 0+; hence:

𝑦(0+) = lim
𝑠→∞

−2𝑠2
𝑠2 + 2𝑠 + 1

= −2, 𝑦(∞) = lim
𝑠→0

𝑠𝑌 (𝑠) = 0
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Exercises

■ find the Laplace transform of the signal illustrated below

Answer: 1
𝑠2

(1 − 3𝑒−2𝑠 + 2𝑒−3𝑠)

■ find the inverse Laplace transform of 𝑋 (𝑠) = 3𝑒−2𝑠

(𝑠 − 1) (𝑠 + 2)
Answer: (𝑒𝑡−2 − 𝑒−2(𝑡−2) )𝑢(𝑡 − 2)
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Solving differential equations

■ Laplace transform is a powerful tool to analyze of linear system dynamics

■ using Laplace transform, the solution of the differential equation can be
transformed into the solution of an algebraic equation

■ using the Laplace transform we can solve differential equations knowing only
initial conditions before the discontinuity 0−

■ directly solving using differential equations, we have to also know the initial
conditions after the discontinuity 0+

Example: use the Laplace transform to solve the second-order linear differential
equation

𝑑2𝑦(𝑡)
𝑑𝑡2

+ 5
𝑑𝑦(𝑡)
𝑑𝑡

+ 6𝑦(𝑡) = 𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑥(𝑡)

with initial conditions 𝑦 (0−) = 2 and ¤𝑦 (0−) = 1 and the input 𝑥(𝑡) = 𝑒−4𝑡𝑢(𝑡)
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Solution:
let 𝑦(𝑡) ⇐⇒ 𝑌 (𝑠), then

𝑑𝑦(𝑡)
𝑑𝑡

⇐⇒ 𝑠𝑌 (𝑠) − 𝑦 (0−) = 𝑠𝑌 (𝑠) − 2

𝑑2𝑦(𝑡)
𝑑𝑡2

⇐⇒ 𝑠2𝑌 (𝑠) − 𝑠𝑦 (0−) − ¤𝑦 (0−) = 𝑠2𝑌 (𝑠) − 2𝑠 − 1

moreover, for 𝑥(𝑡) = 𝑒−4𝑡𝑢(𝑡)

𝑋 (𝑠) = 1

𝑠 + 4
and

𝑑𝑥(𝑡)
𝑑𝑡

⇐⇒ 𝑠𝑋 (𝑠) − 𝑥 (0−) = 𝑠

𝑠 + 4
− 0 =

𝑠

𝑠 + 4

taking the Laplace transform of the diff. equation:[
𝑠2𝑌 (𝑠) − 2𝑠 − 1

]
+ 5[𝑠𝑌 (𝑠) − 2] + 6𝑌 (𝑠) = 𝑠

𝑠 + 4
+ 1

𝑠 + 4
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rearranging, we obtain(
𝑠2 + 5𝑠 + 6

)
𝑌 (𝑠) − (2𝑠 + 11) = 𝑠 + 1

𝑠 + 4

therefore,

𝑌 (𝑠) = 2𝑠 + 11

𝑠2 + 5𝑠 + 6
+ 𝑠 + 1

(𝑠2 + 5𝑠 + 6) (𝑠 + 4) =
2𝑠2 + 20𝑠 + 45

(𝑠 + 2) (𝑠 + 3) (𝑠 + 4)

expanding the right-hand side into partial fractions:

𝑌 (𝑠) = 13/2
𝑠 + 2

− 3

𝑠 + 3
− 3/2

𝑠 + 4

taking inverse Laplace transform:

𝑦(𝑡) =
(
13

2
𝑒−2𝑡 − 3𝑒−3𝑡 − 3

2
𝑒−4𝑡

)
𝑢(𝑡)
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Zero-input and zero-state components

■ the initial conditions term in the response give rise to the zero-input response
■ the input term give rise to the zero-state response

Example: in the previous example, we have

𝑌 (𝑠) = 2𝑠 + 11

𝑠2 + 5𝑠 + 6︸        ︷︷        ︸
initial conditions term

+ 𝑠 + 1

(𝑠 + 4) (𝑠2 + 5𝑠 + 6)︸                    ︷︷                    ︸
input term

=

[
7

𝑠 + 2
− 5

𝑠 + 3

]
+
[
−1/2
𝑠 + 2

+ 2

𝑠 + 3
− 3/2

𝑠 + 4

]
taking the inverse transform:

𝑦(𝑡) =
(
7𝑒−2𝑡 − 5𝑒−3𝑡

)
𝑢(𝑡)︸                    ︷︷                    ︸

ZIR

+
(
−1

2
𝑒−2𝑡 + 2𝑒−3𝑡 − 3

2
𝑒−4𝑡

)
𝑢(𝑡)︸                                    ︷︷                                    ︸

ZSR
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Example 7.10

the switch is in the closed position for a long time before 𝑡 = 0, when it is opened
instantaneously; find the inductor current 𝑦(𝑡) for 𝑡 ≥ 0

Solution: when the switch is in the closed position (for a long time), the inductor
current is 2 amperes and the capacitor voltage is 10 volts; thus, 𝑦 (0−) = 2 and
𝑣𝐶 (0−) = 10
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when the switch is opened, we get the circuit

notice that we represented the voltage source at 𝑡 ≥ 0 by the unit step 10𝑢(𝑡) for
𝑡 > 0 after opening the switch

the loop equation of the circuit is

𝑑𝑦(𝑡)
𝑑𝑡

+ 2𝑦(𝑡) + 5

∫ 𝑡

−∞
𝑦(𝜏)𝑑𝜏 = 10𝑢(𝑡)
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if 𝑦(𝑡) ⇐⇒ 𝑌 (𝑠) then

𝑑𝑦(𝑡)
𝑑𝑡

⇐⇒ 𝑠𝑌 (𝑠) − 𝑦 (0−) = 𝑠𝑌 (𝑠) − 2

and ∫ 𝑡

−∞
𝑦(𝜏)𝑑𝜏 ⇐⇒ 𝑌 (𝑠)

𝑠
+
∫ 0−

−∞ 𝑦(𝜏)𝑑𝜏
𝑠

note that (1/𝐶)
∫ 0−

−∞ 𝑦(𝜏)𝑑𝜏 = 𝑣𝐶 (0−) and thus:∫ 0−

−∞
𝑦(𝜏)𝑑𝜏 = 𝐶𝑣𝐶 (0−) = 1

5
(10) = 2

hence ∫ 𝑡

−∞
𝑦(𝜏)𝑑𝜏 ⇐⇒ 𝑌 (𝑠)

𝑠
+ 2

𝑠
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using these results, the Laplace transform the diff. equation is

𝑠𝑌 (𝑠) − 2 + 2𝑌 (𝑠) + 5𝑌 (𝑠)
𝑠

+ 10

𝑠
=
10

𝑠

thus

𝑌 (𝑠) = 2𝑠

𝑠2 + 2𝑠 + 5

to find the inverse Laplace transform of 𝑌 (𝑠), we use pair 10c in Laplace table
with values 𝐴 = 2, 𝐵 = 0, 𝑎 = 1, and 𝑐 = 5:

𝑟 =

√︂
20

4
=
√
5, 𝑏 =

√
𝑐 − 𝑎2 = 2 and \ = tan−1

(
2

4

)
= 26.6◦

therefore,

𝑦(𝑡) =
√
5𝑒−𝑡 cos (2𝑡 + 26.6◦) 𝑢(𝑡)
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Exercise

■ use the Laplace transform to solve the following differential equation for 𝑦(𝑡) if
all initial conditions are zero

𝑑2𝑦

𝑑𝑡2
+ 12

𝑑𝑦

𝑑𝑡
+ 32𝑦 = 32𝑢(𝑡)

Answer: 𝑦(𝑡) =
(
1 − 2𝑒−4𝑡 + 𝑒−8𝑡

)
𝑢(𝑡)

■ use Laplace transform to solve

𝑑2𝑦(𝑡)
𝑑𝑡2

+ 4
𝑑𝑦(𝑡)
𝑑𝑡

+ 3𝑦(𝑡) = 2
𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑥(𝑡)

for the input 𝑥(𝑡) = 𝑢(𝑡); the initial conditions are 𝑦(0−) = 1 and ¤𝑦(0−) = 2

Answer: 𝑦(𝑡) = 1
3 (1 + 9𝑒−𝑡 − 7𝑒−3𝑡 )𝑢(𝑡)
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Laplace representation of basic electric elements

Resistor

𝑣(𝑡) = 𝑅𝑖(𝑡) ⇐⇒ 𝑉 (𝑠) = 𝑅𝐼 (𝑠)

Inductor

𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)
𝑑𝑡

⇐⇒ 𝑉 (𝑠) = 𝐿𝑠𝐼 (𝑠) − 𝐿𝑖 (0−)
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Capacitor

𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)
𝑑𝑡

⇐⇒ 𝑉 (𝑠) = 1

𝐶𝑠
𝐼 (𝑠) + 𝑣 (0−)

𝑠

Impedance: the impedance of an element is 𝑍 = 𝑉 (𝑠)/𝐼 (𝑠) for the element
(under zero initial conditions)

■ the impedance of a resistor of 𝑅 is 𝑍 = 𝑅

■ the impedance of an inductor of 𝐿 is 𝑍 = 𝐿𝑠

■ the impedance of a capacitor 𝐶 is 𝑍 = 1/𝐶𝑠
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Kirchhoff’s laws

Time domain

𝑁∑︁
𝑘=1

𝑣𝑘 (𝑡) = 0 and
𝑀∑︁
𝑘=1

𝑖𝑘 (𝑡) = 0

■ 𝑣𝑘 (𝑡) (𝑘 = 1, 2, . . . , 𝑁) are the voltages across 𝑁 elements in a loop

■ 𝑖𝑘 (𝑡) (𝑘 = 1, 2, . . . , 𝑀) are the 𝑀 currents entering a node

Laplace domain

𝑁∑︁
𝑘=1

𝑉𝑘 (𝑠) = 0 and
𝑀∑︁
𝑘=1

𝐼𝑘 (𝑠) = 0

■ 𝑉𝑘 (𝑠) and 𝑉𝑘 (𝑠) are the Laplace transforms of 𝑣𝑘 (𝑡) and 𝑖𝑘 (𝑡)
■ we can treat the network as if it consisted of the “resistances” 𝑅, 𝐿𝑠, 1/𝐶𝑠
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Illustrative example

the initial conditions 𝑦 (0−) = 2 and 𝑣𝐶 (0−) = 10

the total voltage in the loop is (10/𝑠) + 2 − (10/𝑠) = 2, and the loop impedance
is (𝑠 + 2 + (5/𝑠)); therefore,

𝑌 (𝑠) = 2

𝑠 + 2 + 5/𝑠 =
2𝑠

𝑠2 + 2𝑠 + 5

which matches our earlier result in slide 7.48
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Example 7.11

find the loop current 𝑖(𝑡) in the circuit shown if all the initial conditions are zero

Solution: we first, we represent the circuit in the frequency domain:
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total impedance in the loop is

𝑍 (𝑠) = 𝑠 + 3 + 2

𝑠
=

𝑠2 + 3𝑠 + 2

𝑠

the input voltage is 𝑉 (𝑠) = 10/𝑠; therefore:

𝐼 (𝑠) = 𝑉 (𝑠)
𝑍 (𝑠) =

10

𝑠2 + 3𝑠 + 2

=
10

(𝑠 + 1) (𝑠 + 2)

=
10

𝑠 + 1
− 10

𝑠 + 2

taking the inverse transform, we arrive at

𝑖(𝑡) = 10
(
𝑒−𝑡 − 𝑒−2𝑡

)
𝑢(𝑡)
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Example 7.12

the switch in the circuit is in the closed position for a long time before 𝑡 = 0, when
it is opened instantaneously; find the currents 𝑦1 (𝑡) and 𝑦2 (𝑡) for 𝑡 ≥ 0
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Solution: by inspection, the initial conditions are 𝑣𝐶 (0−) = 16 and 𝑦2 (0−) = 4;
thus for 𝑡 ≥ 0, the circuit in Laplace domain is

the loop equations can be written directly in the frequency domain as

𝑌1 (𝑠)
𝑠

+ 1

5
[𝑌1 (𝑠) − 𝑌2 (𝑠)] =

4

𝑠

−1

5
𝑌1 (𝑠) +

6

5
𝑌2 (𝑠) +

𝑠

2
𝑌2 (𝑠) = 2
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solving, we get

𝑌1 (𝑠) =
24(𝑠 + 2)

𝑠2 + 7𝑠 + 12
=

24(𝑠 + 2)
(𝑠 + 3) (𝑠 + 4) =

−24
𝑠 + 3

+ 48

𝑠 + 4

and

𝑌2 (𝑠) =
4(𝑠 + 7)

𝑠2 + 7𝑠 + 12
=

16

𝑠 + 3
− 12

𝑠 + 4

hence,

𝑦1 (𝑡) =
(
−24𝑒−3𝑡 + 48𝑒−4𝑡

)
𝑢(𝑡)

𝑦2 (𝑡) =
(
16𝑒−3𝑡 − 12𝑒−4𝑡

)
𝑢(𝑡)
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Alternative solution: we can also use Thévenin’s theorem to compute 𝑌1 (𝑠)
and 𝑌2 (𝑠); the previous circuit shows that the Thévenin impedance 𝑍 (𝑠) and the
Thévenin source 𝑉 (𝑠) (across right part of terminals 𝑎𝑏) are

𝑍 (𝑠) =
1
5

(
𝑠
2 + 1

)
1
5 + 𝑠

2 + 1
=

𝑠 + 2

5𝑠 + 12
, 𝑉 (𝑠) =

− 1
5

1
5 + 𝑠

2 + 1
2 =

−4
5𝑠 + 12

the current 𝑌1 (𝑠) is given by

𝑌1 (𝑠) =
4
𝑠
−𝑉 (𝑠)

1
𝑠
+ 𝑍 (𝑠)

=
24(𝑠 + 2)

𝑠2 + 7𝑠 + 12

which matches our previous result (we can determine 𝑌2 (𝑠) in a similar manner)
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Exercise

the input is switched on at 𝑡 = 0; the initial conditions are 𝑦 (0−) = 2 amperes
and 𝑣𝐶 (0−) = 50 volts

find the loop current 𝑦(𝑡) and the capacitor voltage 𝑣𝐶 (𝑡) for 𝑡 ≥ 0

Answer:

𝑦(𝑡) = 10
√
2𝑒−𝑡 cos

(
2𝑡 + 81.8◦

)
𝑢(𝑡)

𝑣𝐶 (𝑡) =
[
24 + 31.62𝑒−𝑡 cos

(
2𝑡 − 34.7◦

) ]
𝑢(𝑡)
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