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Discrete-time system

a discrete-time system is a system whose inputs and outputs are DT signals

Single-input single-output

input
𝑥 [𝑛]

output
𝑦[𝑛] = 𝐻{𝑥 [𝑛]}𝐻

Multi-input multi-output

𝑥1 [𝑛]

𝑥2 [𝑛]

𝑥 𝑗 [𝑛]

𝑦1 [𝑛]

𝑦2 [𝑛]

𝑦𝑘 [𝑛]

system
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Block diagrams operations

Amplifier (scalar multiplication)

𝑎 𝑎

Summation (addition)

𝑥 𝑥 − 𝑦

𝑦 𝑦 𝑦

𝑥 𝑥𝑥 − 𝑦 𝑥 − 𝑦

Delay
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Example 5.1 (saving accounts)

■ a person makes a deposit in a bank regularly every 𝑇 = 1 month

■ the bank pays a interest rate 𝑟 on the account balance during the period 𝑇

find the equation relating the output 𝑦[𝑛] (the balance) to the input 𝑥 [𝑛] (the
deposit)

Solution:

■ the balance 𝑦[𝑛] is the sum of the previous balance 𝑦[𝑛 − 1], the interest on
𝑦[𝑛 − 1] during the period 𝑇 , and the deposit 𝑥 [𝑛]:

𝑦[𝑛] = 𝑦[𝑛 − 1] + 𝑟𝑦[𝑛 − 1] + 𝑥 [𝑛] = (1 + 𝑟)𝑦[𝑛 − 1] + 𝑥 [𝑛]

or
𝑦[𝑛] − 𝑎𝑦[𝑛 − 1] = 𝑥 [𝑛], 𝑎 = 1 + 𝑟
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the equation

𝑦[𝑛] = 𝑎𝑦[𝑛 − 1] + 𝑥 [𝑛]

or
𝑦[𝑛] − 𝑎𝑦[𝑛 − 1] = 𝑥 [𝑛]

can be represented as:

note that so we can replace 𝑛 by 𝑛 + 1 to obtain the advance-form:

𝑦[𝑛 + 1] − 𝑎𝑦[𝑛] = 𝑥 [𝑛 + 1]
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Example 5.2

find the input-output relation of the system described shown below

𝑥 [𝑛] 𝑦[𝑛]

Solution:

𝑦[𝑛] = 𝑎(𝑥 [𝑛] − 𝑏𝑦[𝑛 − 1] − 𝑐𝑦[𝑛 − 2])
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Example 5.3 (sales estimate)

■ during semester 𝑛, 𝑥 [𝑛] students enroll in a course requiring a textbook

■ the publisher sells 𝑦[𝑛] new copies of the same book

■ one-quarter of students with books in salable condition resell the texts at the
end of the semester, and the book life is three semesters

■ find the equation relating the new books sold , 𝑦[𝑛], to the number of students
enrolled in the 𝑛th semester, 𝑥 [𝑛], assuming that every student buys a book

Solution: in the 𝑛th semester,

■ the number of new sold books 𝑦[𝑛] and old resold books must be equal to
number of students 𝑥 [𝑛]

■ there are 𝑦[𝑛 − 1] new books sold in semester (𝑛 − 1), and (1/4)𝑦[𝑛 − 1]
books will be resold in the 𝑛th semester

■ also, 𝑦[𝑛 − 2] new books are sold in semester 𝑛 − 2, and (1/4)𝑦[𝑛 − 2]
books will be resold in semester (𝑛 − 1); again, a quarter of these, that is,
(1/16)𝑦[𝑛 − 2], will be resold in the 𝑛th semester
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hence, 𝑥 [𝑛] is equal to:

𝑦[𝑛] + 1
4 𝑦[𝑛 − 1] + 1

16 𝑦[𝑛 − 2] = 𝑥 [𝑛]

the above equation is in delay-form; the block-diagram representation of the
above equation is

in advance form, we can replace 𝑛 by 𝑛 + 2 to obtain

𝑦[𝑛 + 2] + 1
4 𝑦[𝑛 + 1] + 1

16 𝑦[𝑛] = 𝑥 [𝑛 + 1]
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Linear systems

a system is

■ homogeneous if 𝑥 → 𝑦, then 𝑎𝑥 → 𝑎𝑦 for any number 𝑎

■ additive if for 𝑥1 → 𝑦1 and 𝑥2 → 𝑦2, we have 𝑥1 + 𝑥2 → 𝑦1 + 𝑦2

a system is linear if it satisfies the superposition property:

𝑥1 −→ 𝑦1, 𝑥2 −→ 𝑦2

then for any numbers 𝑎1, 𝑎2:

𝑎1𝑥1 + 𝑎2𝑥2 −→ 𝑎1𝑦1 + 𝑎2𝑦2

in other words, the system is both homogeneous and additive

(a system that does not satisfy either the homogeneity or additivity property is
nonlinear)
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Time-invariant systems

a system 𝑆 is time-invariant (shift invariance) if

𝑥 [𝑛] → 𝑦[𝑛] implies that 𝑥 [𝑛 − 𝑛𝑜] → 𝑦[𝑛 − 𝑛𝑜]

for any integer 𝑛𝑜 (assuming initial conditions are also delayed by 𝑛𝑜)

𝑥 [𝑛]

𝑥 [𝑛]

𝑦 [𝑛]

𝑥 [𝑛 − 𝑛𝑜 ]

𝑦 [𝑛 − 𝑛𝑜 ]

𝑦 [𝑛 − 𝑛𝑜 ]

Delay
𝑛𝑜 samples

Delay
𝑛𝑜 samples

■ a system is time-varying if the the above does not hold

■ linear time-invariant discrete system (LTID) is a DT system that is both linear
and time-invariant
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Example 5.4

determine whether the system described by 𝑦[𝑛] = 𝑒−𝑛𝑥 [𝑛] is

(a) linear or non-linear

(b) time-invariant or time-varying

Solution:

(a) for inputs 𝑥1 [𝑛] and 𝑥2 [𝑛], the outputs are 𝑦1 [𝑛] = 𝑒−𝑛𝑥1 [𝑛] and
𝑦2 [𝑛] = 𝑒−𝑛𝑥2 [𝑛]; for input 𝑥 [𝑛] = 𝑎1𝑥1 [𝑛] + 𝑎2𝑥2 [𝑛], the output is

𝑒−𝑛 [𝑎1𝑥1 [𝑛] + 𝑎2𝑥2 [𝑛]] = 𝑎1𝑒−𝑛𝑥1 [𝑛] + 𝑎2𝑒−𝑛𝑥2 [𝑛] = 𝑎1𝑦1 [𝑛] + 𝑎2𝑦2 [𝑛]

hence the system satisfies the superposition property, hence linear

(b) the input 𝑥1 [𝑛] gives output 𝑦1 [𝑛] = 𝑒−𝑛𝑥 [𝑛] and the input
𝑥2 [𝑛] = 𝑥1 [𝑛 − 𝑛0] gives output

𝑦2 [𝑛] = 𝑒−𝑛𝑥2 [𝑛] = 𝑒−𝑛𝑥1 [𝑛 − 𝑛0] ≠ 𝑦1 [𝑛 − 𝑛0]

hence, the system is time-varying
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Causal and static systems

Causal systems: a causal (or physical or nonanticipative) system is one where
the output at 𝑛 = 𝑘 depends only on the input 𝑥 [𝑛] for 𝑛 ≤ 𝑘

■ the output at the present instant depends only on the past and present values
of the input

■ output does not depends on future inputs

■ a system that violates the condition of causality is called a noncausal (or
anticipative) system

Static (memoryless) systems: a system is static (instantaneous) or
memoryless if the output at any instant 𝑛 depends input at the same time 𝑛 only;
otherwise, the system is dynamic or with memory

Examples

■ 𝑦[𝑛] = sin(𝑥 [𝑛]) is a causal and static (memoryless) system

■ the system 𝑦[𝑛] = 𝑥 [𝑛] + 𝑦[𝑛 − 1] is a causal and dynamic system (with
memory)
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Invertible systems

a discrete-time system 𝑆 is invertible if we can recover the input 𝑥 [𝑛] from the
output 𝑦[𝑛] by another system (called the inverse system)

𝑥 [𝑛] 𝑥 [𝑛]𝑦 [𝑛]

■ for an invertible system, every input have a unique output

■ example: 𝑦[𝑛] = 𝑥 [𝑛 + 𝑘] is invertible since 𝑥 [𝑛] = 𝑦[𝑛 − 𝑘]

Noninvertible system: a system is noninvertible when it is impossible to obtain
the input from the output

■ example: 𝑦[𝑛] = 𝑥 [𝑀𝑛] loses all but every 𝑀 th sample of the input, hence,
noninvertible

■ systems where two different inputs give same output are noninverible
– 𝑦[𝑛] = cos(𝑥 [𝑛])
– 𝑦[𝑛] = |𝑥 [𝑛] |
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BIBO stable

a system is bounded-input-bounded-output (BIBO) stable (externally stable) if
every bounded input applied at the input terminal results in a bounded output

Examples:

■ 𝑦[𝑛] = 𝑥 [−𝑛] is BIBO stable

■ 𝑦[𝑛] = 𝑒−𝑛𝑥 [𝑛]𝑢[𝑛] is BIBO stable

■ 𝑦[𝑛] = 𝑛𝑥 [𝑛] is BIBO unstable

■ 𝑦[𝑛] = 𝑒−𝑛𝑥 [𝑛] is BIBO unstable
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Example 5.5

consider a DT system described as 𝑦[𝑛] = 𝑥 [𝑛]𝑥 [𝑛 − 1]; determine whether the
system is

(a) linear

(b) time-invariant

(c) causal

(d) memoryless (static)

(e) invertible

(f) BIBO-stable
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Solution: suppose 𝑥 [𝑛] ⇒ 𝑦[𝑛]
(a) we have

𝑎𝑥 [𝑛] ⇒ 𝑎2𝑥 [𝑛]𝑥 [𝑛 − 1] = 𝑎2𝑦[𝑛] ≠ 𝑎𝑦[𝑛],

hence, system is nonlinear since it does not satisfy the homogeneity property

(b) we have

𝑥 [𝑛− 𝑛0] ⇒ 𝑥 [𝑛− 𝑛0]𝑥 [𝑛− 1− 𝑛0] = 𝑥 [𝑛− 𝑛0]𝑥 [(𝑛− 𝑛0) − 1] = 𝑦[𝑛− 𝑛0]

hence, the system is time-invariant

(c) causal because the current output does not depend on future input values

(d) the output 𝑦 at time 𝑛 depends on the past values of input 𝑥 (at 𝑛 − 1); hence
not memoryless (has memory, dynamic)

(e) since two different inputs 𝑥1 [𝑛] = 1 and 𝑥2 [𝑛] = −1 give same output
𝑦1 [𝑛] = 𝑦2 [𝑛] = 1, the system is noninvertible

(f) for |𝑥 [𝑛] | ≤ 𝑀𝑥 < ∞, we have |𝑦[𝑛] | ≤ 𝑀2
𝑥 < ∞; hence, system is

BIBO-stable
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Exercises

■ show that system described by the first-order difference equation
𝑦[𝑛 + 1] + 2𝑦[𝑛] = 𝑥 [𝑛 + 1] − 𝑥 [𝑛] is linear and time-invariant

■ determine whether the following systems are static or dynamic; which of the
systems are causal?

(a) 𝑦[𝑛 + 1] = 𝑥 [𝑛]
(b) 𝑦[𝑛] = (𝑛 + 1)𝑥 [𝑛]

(c) 𝑦[𝑛 + 1] = 𝑥 [𝑛 + 1]
(d) 𝑦[𝑛 − 1] = 𝑥 [𝑛]

■ show that a system specified by equation 𝑦[𝑛] = 𝑎𝑥 [𝑛] + 𝑏 is invertible

■ show that the system 𝑦[𝑛] = 𝑛𝑥 [𝑛] is linear, time varying, and non-invertible

■ show that the system 𝑦[𝑛] = 𝑥 [−𝑛] is linear, time variant, dynamic, and
noncausal

■ show that the system 𝑦[𝑛] = |𝑥 [𝑛] |2 is not linear, time invariant, and
noninvertible

■ explain why the continuous-time system 𝑦(𝑡) = 𝑥(2𝑡) is always invertible and
yet the corresponding discrete-time system 𝑦[𝑛] = 𝑥 [2𝑛] is not invertible
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Linear difference equation

Advance-form

𝑦[𝑛 + 𝑁] + 𝑎1𝑦[𝑛 + 𝑁 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 + 1] + 𝑎𝑁 𝑦[𝑛] =
𝑏0𝑥 [𝑛 + 𝑀] + 𝑏1𝑥 [𝑛 + 𝑀 − 1] + · · · + 𝑏𝑀−1𝑥 [𝑛 + 1] + 𝑏𝑀𝑥 [𝑛]

■ order is 𝑁

■ system is linear

■ system is time-invariant if coefficients 𝑎𝑖 , 𝑏𝑖 are constants (independent of 𝑛)

■ the system is causal if 𝑀 ≤ 𝑁

■ many systems can be modeled as linear difference systems
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Causal advance-form: for 𝑀 = 𝑁 , we get the 𝑁 th order causal advance-form

𝑦[𝑛 + 𝑁] + 𝑎1𝑦[𝑛 + 𝑁 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 + 1] + 𝑎𝑁 𝑦[𝑛] =
𝑏0𝑥 [𝑛 + 𝑁] + 𝑏1𝑥 [𝑛 + 𝑁 − 1] + · · · + 𝑏𝑁−1𝑥 [𝑛 + 1] + 𝑏𝑁𝑥 [𝑛]

Causal delay-form: if we replace 𝑛 by 𝑛 − 𝑁 throughout the equation, we get the
delay-form:

𝑦[𝑛] + 𝑎1𝑦[𝑛 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 − 𝑁 + 1] + 𝑎𝑁 𝑦[𝑛 − 𝑁] =
𝑏0𝑥 [𝑛] + 𝑏1𝑥 [𝑛 − 1] + · · · + 𝑏𝑁−1𝑥 [𝑛 − 𝑁 + 1] + 𝑏𝑁𝑥 [𝑛 − 𝑁]

■ delay form is more natural because delay operation is causal, hence realizable

■ advance form is more mathematically convenience compared to delay form
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Recursive (iterative) solution

the equation

𝑦[𝑛] + 𝑎1𝑦[𝑛 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 − 𝑁 + 1] + 𝑎𝑁 𝑦[𝑛 − 𝑁]
= 𝑏0𝑥 [𝑛] + 𝑏1𝑥 [𝑛 − 1] + · · · + 𝑏𝑁−1𝑥 [𝑛 − 𝑁 + 1] + 𝑏𝑁𝑥 [𝑛 − 𝑁]

can be expressed in recursive form:

𝑦[𝑛] = − 𝑎1𝑦[𝑛 − 1] − 𝑎2𝑦[𝑛 − 2] − · · · − 𝑎𝑁 𝑦[𝑛 − 𝑁]
+ 𝑏0𝑥 [𝑛] + 𝑏1𝑥 [𝑛 − 1] + · · · + 𝑏𝑁𝑥 [𝑛 − 𝑁]

■ to find 𝑦[0], we need to know the 𝑁 initial conditions
𝑦[−1], 𝑦[−2], . . . , 𝑦[−𝑁]

■ to find 𝑦[1], we need to know the 𝑁 initial conditions
𝑦[0], 𝑦[−1], . . . , 𝑦[−𝑁 + 1] ...etc

■ knowing the 𝑁 initial conditions and the input, we can determine recursively
the entire output 𝑦[0], 𝑦[1], 𝑦[2], 𝑦[3], . . ., one value at a time
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Example 5.6

solve iteratively (recursively):

𝑦[𝑛] − 0.5𝑦[𝑛 − 1] = 𝑥 [𝑛]

given 𝑦[−1] = 16 and causal input 𝑥 [𝑛] = 𝑛2𝑢[𝑛]

Solution: the equation can be expressed as

𝑦[𝑛] = 0.5𝑦[𝑛 − 1] + 𝑥 [𝑛]

if we set 𝑛 = 0, we obtain

𝑦[0] = 0.5𝑦[−1] + 𝑥 [0] = 0.5(16) + 0 = 8

𝑦[1] = 0.5(8) + (1)2 = 5

𝑦[2] = 0.5(5) + (2)2 = 6.5

𝑦[3] = 0.5(6.5) + (3)2 = 12.25

𝑦[4] = 0.5(12.25) + (4)2 = 22.125

...
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Example 5.7

solve iteratively

𝑦[𝑛 + 2] − 𝑦[𝑛 + 1] + 0.24𝑦[𝑛] = 𝑥 [𝑛 + 2] − 2𝑥 [𝑛 + 1]

with initial conditions 𝑦[−1] = 2, 𝑦[−2] = 1 and a causal input 𝑥 [𝑛] = 𝑛𝑢[𝑛]

Solution: the system equation can be expressed as

𝑦[𝑛 + 2] = 𝑦[𝑛 + 1] − 0.24𝑦[𝑛] + 𝑥 [𝑛 + 2] − 2𝑥 [𝑛 + 1]

hence

𝑦[0] = 𝑦[−1] − 0.24𝑦[−2] + 𝑥 [0] − 2𝑥 [−1] = 2 − 0.24(1) + 0 − 0 = 1.76

𝑦[1] = 𝑦[0] − 0.24𝑦[−1] + 𝑥 [1] − 2𝑥 [0] = 1.76 − 0.24(2) + 1 − 0 = 2.28

𝑦[2] = 𝑦[1] − 0.24𝑦[0] + 𝑥 [2] − 2𝑥 [1] = 2.28 − 0.24(1.76) + 2 − 2(1) = 1.8576

...
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Matlab example

we can use Matlab to recursively solve difference equations

■ the previews example, can be solved via Matlab code:

n = (-2:4); x = n.*(n>=0);

y = zeros(size(n)); y(n<0) = [1,2];

for ind = find(n>=0),

y(ind) = y(ind-1)-0.24*y(ind-2)+x(ind)-2*x(ind-1);

end

y(n>=0)

[output: y = 1.76 2.28 1.86 0.31 -2.14]

■ in the example on page 5.4, we can determine the money earned by investing
$100 monthly at 0.5% interest per month for 100 months:

r = 0.005; a1 = -(1+r); y(1) = 100;

for n = 2:100, y(n) = -a1*y(n-1)+100; end

y(100)-100*100

[output: ans = 2933.37]
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Exercises

■ using the iterative method, find the first three terms of 𝑦[𝑛] for

𝑦[𝑛 + 1] − 2𝑦[𝑛] = 𝑥 [𝑛]

the initial condition is 𝑦[−1] = 10 and the input 𝑥 [𝑛] = 2 starting at 𝑛 = 0
[Answer: 𝑦[0] = 20, 𝑦[1] = 42, and 𝑦[2] = 86]

■ iteratively solve

𝑦[𝑛] − 0.5𝑦[𝑛 − 1] − 𝑥 [𝑛] − 0.5𝑥 [𝑛 − 1]

with 𝑦[−1] = 6 and 𝑥 [𝑛] = cos(𝑛𝜋/2)𝑢[𝑛]; compute the first six values

■ Nonrecursive difference equation: consider an input 𝑥 [𝑛] = cos(𝜋𝑛/2)𝑢[𝑛]
and a system represented as

𝑦[𝑛] = (1/5) (𝑥 [𝑛 + 2] + 𝑥 [𝑛 + 1] + 𝑥 [𝑛] + 𝑥 [𝑛] + 𝑥 [𝑛 − 1] + 𝑥 [𝑛 − 2])

determine the output 𝑦[𝑛] at times 𝑛 = 0 and 𝑛 = 1234
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Continuous to discrete C/D and discrete to continuous D/C

■ DT system can be used to process a continuous-time signal

■ DT signals are more efficient to send, receive, and store information

■ DT systems are easier to handle and manipulate compared to CT systems

continuous to discrete signal processing 5.25



Example: digital differentiator

a digital differentiator is a system that differentiates a continuous-time signals by
discrete-time processing

■ output 𝑦(𝑡) is derivative of input 𝑥(𝑡): 𝑦(𝑡) = 𝑑𝑥 (𝑡 )
𝑑𝑡

■ let 𝑥 [𝑛] = 𝑥(𝑛𝑇) and 𝑦[𝑛] = 𝑦(𝑛𝑇)

𝑦(𝑛𝑇) = 𝑑𝑥(𝑡)
𝑑𝑡

�����
𝑡=𝑛𝑇

= lim
𝑇→0

1

𝑇
[𝑥(𝑛𝑇) − 𝑥 [(𝑛 − 1)𝑇]]

hence

𝑦[𝑛] = lim
𝑇→0

1

𝑇
(𝑥 [𝑛] − 𝑥 [𝑛 − 1])
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assuming 𝑇 > 0 to be sufficiently small, we can approximate the differentiator by
the backward difference system:

𝑦[𝑛] = 1

𝑇
(𝑥 [𝑛] − 𝑥 [𝑛 − 1])

for example, on ramp function 𝑥 [𝑛] = 𝑛𝑇𝑢[𝑛], we get

𝑦[𝑛] = 1
𝑇
(𝑥 [𝑛] − 𝑥 [𝑛 − 1]) = 𝑢[𝑛 − 1]

as 𝑇 approaches zero, 𝑦(𝑡) approaches the desired output 𝑢(𝑡)
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Example: digital integrator

suppose we want to compute 𝑦(𝑡) =
∫ 𝑡
−∞ 𝑥(𝜏)𝑑𝜏 using discrete-time systems; at

𝑡 = 𝑛𝑇 ,

𝑦(𝑛𝑇) = lim
𝑇→0

𝑛∑︁
𝑘=−∞

𝑥(𝑘𝑇)𝑇 or 𝑦[𝑛] = lim
𝑇→0

𝑇

𝑛∑︁
𝑘=−∞

𝑥 [𝑘]

assuming 𝑇 is small enough, we get the approximation

𝑦[𝑛] = 𝑇
𝑛∑︁

𝑘=−∞
𝑥 [𝑘]

■ the above is an example of accumulator system

■ digital integrator equation can be expressed in the recursive form:

𝑦[𝑛] − 𝑦[𝑛 − 1] = 𝑇𝑥 [𝑛]
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Differentiation to difference equation

for small enough 𝑇 , we can approximate

𝑑𝑦(𝑡)
𝑑𝑡

����
𝑡=𝑛𝑇

≈ 𝑦[𝑛] − 𝑦[𝑛 − 1]
𝑇

𝑑2𝑦(𝑡)
𝑑𝑡2

����
𝑡=𝑛𝑇

= lim
𝑇→0

1

𝑇

(
𝑑

𝑑𝑡
𝑦(𝑡)

����
𝑡=𝑛𝑇

− 𝑑

𝑑𝑡
𝑦(𝑡)

����
𝑡=(𝑛−1)𝑇

)
≈ 1

𝑇

(
𝑦[𝑛] − 𝑦[𝑛 − 1]

𝑇
− 𝑦[𝑛 − 1] − 𝑦[𝑛 − 2]

𝑇

)
=

1

𝑇2
(𝑦[𝑛] − 2𝑦[𝑛 − 1] + 𝑦[𝑛 − 2])

similarly, we can show that a 𝐾 th-order derivative can be approximated by

𝑑𝐾

𝑑𝑡𝐾
𝑦(𝑡)

����
𝑡=𝑛𝑇

≈ 1

𝑇𝐾

𝐾∑︁
𝑘=0

(−1)𝑘
(
𝐾

𝑘

)
𝑦[𝑛 − 𝑘]
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Example: differential equation to difference equation

𝑑𝑦(𝑡)
𝑑𝑡

+ 𝑐𝑦(𝑡) = 𝑥(𝑡)

from the definition of a derivative, we can express the above at 𝑡 = 𝑛𝑇 as

lim
𝑇→0

𝑦[𝑛] − 𝑦[𝑛 − 1]
𝑇

+ 𝑐𝑦[𝑛] = 𝑥 [𝑛]

assuming very small 𝑇 ≠ 0, we can approximate the above as:

𝑦[𝑛] + 𝛼𝑦[𝑛 − 1] = 𝛽𝑥 [𝑛]

where

𝛼 =
−1

1 + 𝑐𝑇 , 𝛽 =
𝑇

1 + 𝑐𝑇
(a computer solves differential equations by solving an equivalent difference
equation; hence, it is important to know how to solve difference systems)
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Example 5.8

assuming a sampling interval 𝑇 = 0.1, determine a difference equation model for
the differential equation

¥𝑦(𝑡) + 4 ¤𝑦(𝑡) + 3𝑦(𝑡) = 100𝑥(𝑡)

with initial conditions 𝑦(0) = 0 and ¤𝑦(0) = 10

Solution: the differential equation is approximated as

1

𝑇2
(𝑦[𝑛] − 2𝑦[𝑛 − 1] + 𝑦[𝑛 − 2]) + 4

𝑇
(𝑦[𝑛] − 𝑦[𝑛 − 1]) + 3𝑦[𝑛] = 100𝑥 [𝑛]

combining terms and substituting 𝑇 = 0.1 yield

143𝑦[𝑛] − 240𝑦[𝑛 − 1] + 100𝑦[𝑛 − 2] = 100𝑥 [𝑛]
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to compute the equivalent initial conditions, we note that 𝑦[0] = 𝑦(0) = 0; further,

10 = ¤𝑦(0) = 𝑑

𝑑𝑡
𝑦(𝑡)

����
𝑡=0

≈ 𝑦(0) − 𝑦(0 − 𝑇)
𝑇

=
𝑦[0] − 𝑦[−1]

0.1
= −10𝑦[−1]

assuming that 𝑇 is sufficiently small, this leads to 𝑦[−1] = −1; following
normalization of the coefficient for 𝑦[𝑛], the differential equation is therefore
modeled as

𝑦[𝑛] − 240

143
𝑦[𝑛 − 1] + 100

143
𝑦[𝑛 − 2] = 100

143
𝑥 [𝑛]

with initial conditions 𝑦[0] = 0 and 𝑦[−1] = −1
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Example: estimation position from video

■ a car is filmed using a camera operating at 60 frames per second

■ let 𝑛 designate the film frame, where 𝑛 = 0 corresponds to engine ignition

■ by analyzing each frame of the film, we can determine the car position 𝑥 [𝑛],
measured in meters, from the original starting position 𝑥 [0] = 0

■ from physics, we know that velocity is 𝑣(𝑡) = 𝑑
𝑑𝑡
𝑥(𝑡)

■ furthermore, we know that acceleration is 𝑎(𝑡) = 𝑑
𝑑𝑡
𝑣(𝑡)

■ we can estimate the car velocity from the film data by using a simple
difference equation 𝑣 [𝑛] = 60(𝑥 [𝑛] − 𝑥 [𝑛 − 1])

■ we can now estimate the car acceleration from the film data by using
𝑎[𝑛] = 60(𝑣 [𝑛] − 𝑥 [𝑣 − 1])
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■ combining last two equations, we get

𝑎[𝑛] = 60(60(𝑥 [𝑛] − 𝑥 [𝑛 − 1]) − 60(𝑥 [𝑛 − 1] − 𝑥(𝑛 − 2]))

or

𝑎[𝑛] = 3600(𝑥 [𝑛] − 2𝑥 [𝑛 − 1] + 𝑥 [𝑛 − 2])

■ this estimate of acceleration has two primary advantages;
– it is simple to calculate
– it is a causal, stable, LTI system (easy to analyze)
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Digital signal processing (DSP)

advantages of DSP

■ digital systems are less sensitive to changes in signal values, thus less
sensitive changes in the component parameter values due to temperature
variation, aging, and other factors

■ digital systems are extremely flexible and easy to implement; digital filter
function is easily altered by simply changing the program

■ even in the presence of noise, reproduction with digital messages is extremely
reliable, often without any deterioration; further, digital signals can be coded to
yield extremely low error rates, high fidelity, error correction capabilities, and
privacy

■ digital signals can be coded to yield extremely low error rates and high fidelity,
as well as privacy; also, more sophisticated signal-processing algorithms can
be used to process digital signals
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■ digital filters can be easily time-shared and therefore can serve a number of
inputs simultaneously; moreover, it is easier and more efficient to multiplex
several digital signals on the same channel

■ reproduction with digital messages is extremely reliable without deterioration;
analog messages such as photocopies and films, for example, lose quality at
each successive stage of reproduction and have to be transported physically
from one distant place to another, often at relatively high cost

disadvantages of DSP

■ increased system complexity due to use of A/D and D/A interfaces,

■ limited range of frequencies available in practice (affordable rates are
gigahertz or less)

■ use of more power than is needed for the passive analog circuits
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Exercise

find a causal difference equation and initial conditions that approximates the
behavior of the second-order differential equation

𝑑2𝑦(𝑡)
𝑑𝑡2

+ 3
𝑑𝑦(𝑡)
𝑑𝑡

+ 2𝑦(𝑡) = 1000𝑥(𝑡)

with initial conditions 𝑦(0) = 0 and ¤𝑦(0) = 3; use the sampling interval 𝑇 = 0.05
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