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Discrete-time signals

a discrete-time (DT) signal is a function defined over an integer variable

𝑥 [𝑛] where 𝑛 ∈ {. . . ,−1, 0, 1, . . .}

■ a sequence of numbers . . . , 𝑥 [−1], 𝑥 [0], 𝑥 [1], . . .
■ a CT signal 𝑥(𝑡) can be transformed into a DT signal by sampling it 𝑥 [𝑛] = 𝑥(𝑡𝑛) over

discrete instants {𝑡𝑛}, 𝑛 = 0, 1, 2, . . .

■ examples:

𝑥 [𝑛] 𝑥 [𝑛] 𝑥 [𝑛]

stock market
daily averages

weekly average
tempratures

samples from exponentially
damped sinusoid
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Uniform sampling

uniform sampling a continuous-time signal 𝑥(𝑡) gives a DT signal:

𝑥 [𝑛] = 𝑥(𝑛𝑇)

■ 𝑛 is an integer

■ 𝑇 is sampling period or sampling interval

Example: sampling 𝑥(𝑡) = 𝑒−𝑡 with 𝑇 = 0.1:

𝑥 [𝑛] = 𝑒−𝑛𝑇 = 𝑒−0.1𝑛 𝑛 = . . . ,−2,−1, 0, 1, 2, . . .
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Causal and periodic signals

a signal 𝑥 [𝑛] is causal if
𝑥 [𝑛] = 0, 𝑛 < 0

■ a signal 𝑥 [𝑛] is anticausal if 𝑥 [𝑛] = 0, 𝑛 ≥ 0

■ a signal that starts before 𝑛 = 0 is called noncausal

Periodic signals: a signal 𝑥 [𝑛] is periodic if for some positive constant 𝑁 :

𝑥 [𝑛] = 𝑥 [𝑛 + 𝑁], for all 𝑛

■ fundamental period 𝑁0 is the minimum 𝑁 , such that the above holds

■ fundamental frequency is 𝐹0 = 1/𝑁0 cycles/sample and Ω0 = 2𝜋/𝑁0

radians/sample

■ a periodic signal must start at 𝑛 = −∞ and continue forever
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Discrete-time sinusoid

𝐴 cos(Ω𝑛 + 𝜃) = 𝐴 cos(2𝜋𝐹𝑛 + 𝜃)

■ 𝐴 is the amplitude, 𝜃 is the phase in radians

■ the frequency Ω has dimension radians per sample

■ 𝐹 = Ω/2𝜋 with dimension cycles (radians/2𝜋) per sample

■ uniform sampling of 𝑥(𝑡) = cos𝜔𝑡 with sampling rate 𝑇 seconds gives

𝑥 [𝑛] = cos(𝜔𝑛𝑇) = cos(Ω𝑛) where Ω = 𝜔𝑇

Periodicity of DT sinusoid: the DT sinusoid 𝑥 [𝑛] = cos(Ω𝑛) = cos(2𝜋𝐹𝑛) is
periodic if Ω𝑁 = 2𝜋𝑚 for some non-zero integers 𝑚 and 𝑁

■ implies DT sinusoid is periodic if 𝐹 = 𝑚/𝑁 is a rational number

■ if 𝐹 = 𝑚0/𝑁0 expressed in simplest form, then 𝑁0 is the fundamental period
in samples/cycle
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Examples

𝑥 [𝑛] fundamental period is 16 𝑥 [𝑛]

𝑥 [𝑛]𝑥 [𝑛]

fundamental period is 8

fundamental period is 16 aperiodic
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Sum periodic signals

the sum of periodic DT signals is always periodic

■ let 𝑥1 [𝑛] and 𝑥2 [𝑛] be periodic with fundamental periods 𝑁01 and 𝑁02

𝑥 [𝑛] = 𝑥1 [𝑛] + 𝑥2 [𝑛]

■ 𝑥 [𝑛] is periodic and the period is the least common multiple of 𝑁01 and 𝑁02

■ if 𝑁01/𝑁02 = 𝑝/𝑞 for some integers 𝑝 and 𝑞 in smallest form, then
𝑁0 = LCM(𝑁01, 𝑁02) = 𝑞𝑁01 = 𝑝𝑁02 is the fundamental period of 𝑥 [𝑛]

Example:
𝑥 [𝑛] = 2 cos(9𝜋𝑛/4) − 3 sin(6𝜋𝑛/5)

we can write the function as

𝑥 [𝑛] = 2 cos(2𝜋(9/8)𝑛) − 3 sin(2𝜋(3/5)𝑛)

we have 𝑁01 = 8 and 𝑁02 = 5; hence 𝑥 [𝑛] is periodic and 𝑁0 = LCM(8, 5) = 40
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Discrete-time exponential

the discrete-time exponential function is

𝑥 [𝑛] = 𝛾𝑛

■ can be expressed in usual form 𝛾𝑛 = 𝑒𝜆𝑛 where 𝛾 = 𝑒𝜆

■ for discrete-time signals, 𝛾𝑛 is preferred over 𝑒𝜆𝑛

Complex exponential: for complex 𝛾 = 𝑟𝑒 𝑗Ω, we get

𝑥 [𝑛] = 𝑟𝑛𝑒 𝑗Ω𝑛 = 𝑟𝑛 (cosΩ𝑛 + 𝑗 sinΩ𝑛)

■ the frequency is |Ω|
■ the angle is 𝑛Ω

■ in complex plane, 𝑒 𝑗Ω𝑛 is a point on a unit circle at an angle Ω𝑛
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Nature of 𝛾𝑛

Nature of 𝑒𝜆𝑛

■ 𝑒𝜆𝑛 grows exponentially with 𝑛 if Re 𝜆 > 0 (𝜆 in RHP)

■ 𝑒𝜆𝑛 decays exponentially with 𝑛 if Re 𝜆 < 0 (𝜆 in LHP)

■ 𝑒𝜆𝑛 constant or oscillate if Re 𝜆 = 0 (𝜆 on imaginary axis)

Nature of 𝛾𝑛

■ 𝛾𝑛 grows exponentially with 𝑛 if |𝛾 | > 1 (𝛾 outside unit circle)

■ 𝛾𝑛 decays exponentially with 𝑛 if |𝛾 | < 1 (𝛾 inside unit circle)

■ 𝛾𝑛 is a constant or oscillate if |𝛾 | = 1 (𝛾 on unit circle)
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■ for 𝜆 = 𝑎 + 𝑗 𝑏, we have 𝑒𝜆𝑛 = 𝛾𝑛 where 𝛾 = 𝑒𝜆 = 𝑒𝑎𝑒 𝑗𝑏

■ hence, |𝛾 | = |𝑒𝑎 | |𝑒 𝑗𝑏 | = 𝑒𝑎
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Behavior of 𝛾𝑛 for real 𝛾

0 < 𝛾 < 1 −1 < 𝛾 < 0

1 < 𝛾
𝛾 < −1
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Behavior of 𝛾𝑛 for complex 𝛾

real part imaginary part|𝛾 | < 1

|𝛾 | > 1real part imaginary part
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Plotting DT signals in Matlab

we can use Matlab to discrete-time signals

Example: the code below plots the following signals over (0 ≤ 𝑛 ≤ 8)

(a) 𝑥𝑎 [𝑛] = (0.8)𝑛

(b) 𝑥𝑏 [𝑛] = (−0.8)𝑛

(c) 𝑥𝑐 [𝑛] = (0.5)𝑛

(d) 𝑥𝑑 [𝑛] = (1.1)𝑛

n = (0:8); x_a = @(n) (0.8).^n; x_b = @(n) (-0.8).^(n);

x_c = @(n) (0.5).^n; x_d = @(n) (1.1).^n;

subplot(2,2,1); stem(n,x_a(n),’k’); ylabel(’x_a[n]’); xlabel(’n’);

subplot(2,2,2); stem(n,x_b(n),’k’); ylabel(’x_b[n]’); xlabel(’n’);

subplot(2,2,3); stem(n,x_c(n),’k’); ylabel(’x_c[n]’); xlabel(’n’);

subplot(2,2,4); stem(n,x_d(n),’k’); ylabel(’x_d[n]’); xlabel(’n’);
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Example: the code below plots cos( 𝜋
12𝑛 +

𝜋
4 ) over the range −30 ≤ 𝑛 ≤ 30

n = (-30:30); x = @(n) cos(n*pi/12+pi/4);

clf; stem(n,x(n),’k’); ylabel(’x[n]’); xlabel(’n’);
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Exercises

■ show that the following equalities holds

(a) (0.25)−𝑛 = 4𝑛

(b) 4−𝑛 = (0.25)𝑛
(c) 𝑒3𝑛 = (20.086)𝑛
(d) 2𝑛 = 𝑒0.693𝑛

(e) 𝑒−1.5𝑛 = (0.2231)𝑛 = (4.4817)−𝑛
(f) (0.5)𝑛 = 𝑒−0.693𝑛

(g) (0.8)−𝑛 = 𝑒0.2231𝑛

■ determine and sketch the DT exponentials 𝛾𝑛 that result from sampling
(𝑇 = 1) the following CT exponentials:

(a) 𝑒0𝑡 = 1
(b) 𝑒𝑡

(c) 𝑒−0.6931𝑡

(d) (−𝑒−0.6931𝑡 )𝑡

(e) 2𝑡

(f) 2−𝑡

(g) 𝑒−𝑡/4

(h) 𝑒 𝑗 𝜋𝑡

for each case, locate the value 𝛾 in the complex plane and state whether 𝛾𝑛 is
exponentially decaying, exponentially growing, or non-decaying

DT signals 4.16



Outline

• DT signals

• signal operations

• useful DT signals

• signal energy and power

• aliasing and DT sinusoids



Time-shifting

the signal 𝑥 [𝑛] can be shifted to the right or left by 𝑛0 > 0 units

𝑥 [𝑛 − 𝑛0] (right-shifted (delayed) signal)

𝑥 [𝑛 + 𝑛0] (left-shifted (advanced) signal)

Example:

𝑥 [𝑛]

𝑥 [𝑛 − 5]

𝑥 [𝑛 + 10]

(0.9)𝑛

(0.9)𝑛−5

(0.9)𝑛+10

𝑛

𝑛

𝑛
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Time reversal

the time reversal operation 𝑥 [−𝑛] rotates 𝑥 [𝑛] about the vertical axis

Example:

𝑥 [𝑛]

𝑥 [−𝑛]

(0.9)𝑛

(0.9)−𝑛
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Time-reversal and shifting

the time-reversal and shifting operation is 𝑥 [𝑘 − 𝑛]

1. 𝑥 [𝑛] time reverse−→ 𝑥 [−𝑛]
(right) shift by 𝑘

−→ 𝑥 [−(𝑛 − 𝑘)] = 𝑥 [𝑘 − 𝑛]
2. 𝑥 [𝑛] (left) shift by 𝑘−→ 𝑥 [𝑛 + 𝑘] time reverse−→ 𝑥 [𝑘 − 𝑛]

Example: find 𝑥 [2 − 𝑛]
𝑥 [𝑛]

𝑥 [−𝑛]

𝑥 [20 − 𝑛]

(0.9)𝑛

(0.9)−𝑛

(0.9)20−𝑛
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Example 4.1

plot 𝑥 [5 − 𝑛] for the signal 𝑥 [𝑛]
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Downsampling (time compression)

downsampling is the compression of 𝑥 [𝑛] by integer factor 𝑀 :

𝑥𝑑 [𝑛] = 𝑥 [𝑀𝑛]

■ 𝑥 [𝑀𝑛] selects every 𝑀 th sample of 𝑥 [𝑛] (𝑥 [0], 𝑥 [𝑀], 𝑥 [2𝑀], . . .)
■ reduces the number of samples by factor 𝑀 (loss of samples)

■ if 𝑥 [𝑛] is obtained by sampling a continuous-time signal, this operation
implies reducing the sampling rate by factor 𝑀
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Upsampling and interpolation

upsampling is the expansion of 𝑥 [𝑛] by integer factor 𝐿

𝑥𝑒 [𝑛] =
{
𝑥 [𝑛/𝐿] 𝑛 = 0,±𝐿,±2𝐿, . . .
0 otherwise (𝑛/𝐿 noninteger)

■ in general, for 𝑛 = 0, 1, 2, . . ., 𝑥𝑒 [𝑛] is:

𝑥 [0], 0, 0, . . . , 0︸      ︷︷      ︸
𝐿−1 zeros

, 𝑥 [1], 0, 0, . . . , 0︸      ︷︷      ︸
𝐿−1 zeros

, 𝑥 [2], 0, 0, . . . , 0︸      ︷︷      ︸
𝐿−1 zeros

, 𝑥 [3], . . .

■ the sampling rate of 𝑥𝑒 [𝑛] is 𝐿 times that of 𝑥 [𝑛]

Interpolation

■ the process of filling-in the zero-valued samples is called interpolation

■ for example, using linear interpolation for 𝐿 = 2, the zero (odd-numbered)
samples are replaced by:

𝑥𝑖 [𝑛] = 1
2 (𝑥𝑒 [𝑛 − 1] + 𝑥𝑒 [𝑛 + 1])
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Example
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Example 4.2

sketch 𝑥 [−15 − 3𝑛] for the DT signal show below

Solution: we write 𝑥 [−15 − 3𝑛] = 𝑥 [−3(𝑛 + 5)] and then follows the steps given
next
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■ compress 𝑥 [𝑛] by 3 to get 𝑥 [3𝑛]

■ time-reverse 𝑥 [3𝑛] to get 𝑥 [−3𝑛]

■ left-shift 𝑥 [−3𝑛] by 5 to obtain 𝑥 [−3(𝑛 + 5)] = 𝑥 [−15 − 3𝑛]
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Even and odd signals

■ a function 𝑥𝑒 [𝑛] is even if 𝑥𝑒 [𝑛] = 𝑥𝑒 [−𝑛]
■ a function 𝑥𝑜 [𝑛] is odd if 𝑥𝑜 [𝑛] = −𝑥𝑜 [−𝑛]

even odd

every signal 𝑥 [𝑛] can expressed as

𝑥 [𝑛] = 1
2 [𝑥 [𝑛] + 𝑥 [−𝑛]]︸               ︷︷               ︸

even

+ 1
2 [𝑥 [𝑛] − 𝑥 [−𝑛]]︸               ︷︷               ︸

odd

signal operations 4.26



Example 4.3

find the even and odd parts of the function, 𝑥 [𝑛] = sin(2𝜋𝑛/7)
(
1 + 𝑛2

)
Solution: the even part is

𝑥𝑒 [𝑛] =
sin(2𝜋𝑛/7)

(
1 + 𝑛2

)
+ sin(−2𝜋𝑛/7)

(
1 + (−𝑛)2

)
2

= 0

the odd part is

𝑥𝑜 [𝑛] =
sin(2𝜋𝑛/7)

(
1 + 𝑛2

)
− sin(−2𝜋𝑛/7)

(
1 + (−𝑛)2

)
2

= sin(2𝜋𝑛/7) (1 + 𝑛2)

the function is odd since the even part is zero
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Properties

Multiplications

even function × odd function = odd function

odd function × odd function = even function

even function × even function = even function

Symmetric summation of even function: for positive integer 𝑁

𝑁∑︁
𝑛=−𝑁

𝑥 [𝑛] = 𝑥 [0] + 2

𝑁∑︁
𝑛=1

𝑥 [𝑛] (𝑥 [𝑛] is even)

Symmetric summation of odd function: for positive integer 𝑁

𝑁∑︁
𝑛=−𝑁

𝑥 [𝑛] = 0 (𝑥 [𝑛] is odd)
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Exercises

■ show that 𝑥 [𝑛] = (0.9)𝑛 for 3 ≤ 𝑛 ≤ 10 and zero otherwise left-shifted by 3
units can be expressed as 0.729(0.9)𝑛 for 0 ≤ 𝑛 ≤ 7, and zero otherwise;
sketch the shifted signal

■ show that 𝑥 [−𝑘 − 𝑛] can be obtained from 𝑥 [𝑛] by first right-shifting 𝑥 [𝑛] by
𝑘 units and then time-reversing this shifted signal

■ sketch the signal 𝑥 [𝑛] = 𝑒−0.5𝑛 for −3 ≤ 𝑛 ≤ 2, and zero otherwise; sketch
the corresponding time-reversed signal and show that it can be expressed as
𝑥𝑟 [𝑛] = 𝑒0.5𝑛 for −2 ≤ 𝑛 ≤ 3
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Exercises

■ consider the signal 𝑥 [𝑛] = cos(2𝜋𝑛/4), which are samples of the signal
cos(2𝜋𝑡) taken at sampling rate 𝑇 = 1/4; sketch 𝑥 [𝑛], 𝑥 [2𝑛], and 𝑥 [4𝑛];
comment on the results

■ the operation 𝑥 [2𝑛] represents a compression by 2 that preserves the
even-numbered samples of the original signal 𝑥 [𝑛]; show that 𝑥 [2𝑛 + 1] also
compresses 𝑥 [𝑛] by a factor of 2, but preserves the odd-numbered samples

■ plot 𝑦[𝑛] = 𝑥 [3𝑛 − 1] for the signal 𝑥 [𝑛] shown below

𝑥 [𝑛]
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Unit step and unit ramp

(discrete-time) unit-step

𝑢[𝑛] =
{
1 𝑛 ≥ 0

0, 𝑛 < 0

also called unit-step sequence

(discrete-time) unit-ramp

ramp[𝑛] =
{
𝑛 𝑛 > 0

0, 𝑛 ≤ 0
= 𝑛𝑢[𝑛]

also called unit-ramp sequence
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Unit impulse

(discrete-time) unit-impulse

𝛿[𝑛] =
{
1 𝑛 = 0

0 𝑛 ≠ 0

■ also called unit sample function or Kronecker delta function

■ defined everywhere (unlike continuous case)

■ 𝛿[𝑛] = 𝛿[𝑎𝑛] for any integer 𝑎 ≠ 0

unit periodic impulse (impulse train)

𝛿𝑁 [𝑛] =
∞∑︁

𝑚=−∞
𝛿[𝑛 − 𝑚𝑁]
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Properties

■ multiplication by DT impulse:

𝑥 [𝑛]𝛿[𝑛 − 𝑘] = 𝑥 [𝑘]𝛿[𝑛 − 𝑘]

■ sampling or sifting property:

𝑥 [𝑛] =
∞∑︁

𝑘=−∞
𝑥 [𝑘]𝛿[𝑛 − 𝑘]

Relation between unit step and unit impulse

𝑢[𝑛] =
𝑛∑︁

𝑘=−∞
𝛿[𝑘]

𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1]
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Rectangular sequence

the function
𝑢[𝑛 − 𝑛1] − 𝑢[𝑛 − 𝑛2]

with 𝑛1 < 𝑛2 is a rectangular sequence from 𝑛1 until (𝑛2 − 1)

Example:

𝑢[𝑛] − 𝑢[𝑛 − 10]

𝑛
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Example 4.4

describe the signal 𝑥 [𝑛] by a single expression valid for all 𝑛 using unit-sequence

Solution: there are many ways to describe the signal using different but
equivalent expressions; one expression is

𝑥 [𝑛] = 𝑛(𝑢[𝑛] − 𝑢[𝑛 − 5]) + 4(𝑢[𝑛 − 5] − 𝑢[𝑛 − 11]) − 2𝛿[𝑛 − 8]
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Energy and power signals

Energy of signal

𝐸𝑥 =

∞∑︁
𝑛=−∞

|𝑥 [𝑛] |2

■ finite if |𝑥 [𝑛] | → 0 as |𝑛| → ∞; infinite otherwise

■ if 𝐸𝑥 is finite, the signal is called an energy signal

Power of a signal

𝑃𝑥 = lim
𝑁→∞

1

2𝑁 + 1

𝑁∑︁
𝑛=−𝑁

|𝑥 [𝑛] |2

■ 𝑃𝑥 is the time average (mean) of |𝑥 [𝑛] |2, also called average power

■
√
𝑃𝑥 is the rms (root-mean-square) value of 𝑥(𝑡)

■ if 𝑃𝑥 is finite and nonzero, the signal is called a power signal
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■ an energy signal has zero power

■ a power signal has infinite energy

■ hence, a signal cannot be both an energy signal and a power signal

■ some signals are neither energy nor power signals

Periodic signals power: a periodic signal 𝑥 [𝑛] with period 𝑁0 has power

𝑃𝑥 =
1

𝑁0

∑︁
𝑁0

|𝑥 [𝑛] |2 =
1

𝑁0

𝑚0+𝑁0−1∑︁
𝑛=𝑚0

|𝑥 [𝑛] |2 for any integer 𝑚0
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Example 4.5

find the energy of the signal 𝑥 [𝑛] = (1/2)𝑛𝑢[𝑛]

Solution:

𝐸𝑥 =

∞∑︁
𝑛=−∞

�� ( 1
2

)𝑛
𝑢[𝑛]

��2 =

∞∑︁
𝑛=0

�� ( 1
2

)𝑛��2 =

∞∑︁
𝑛=0

(
1
2

)2𝑛
=

∞∑︁
𝑛=0

(
1
4

)𝑛
= 1 + 1

4 + 1
42

+ · · ·

using the formula,
∑∞

𝑛=0 𝑟
𝑛 = 1

1−𝑟 , |𝑟 | < 1, we obtain

𝐸𝑥 =
1

1 − 1/4 =
4

3
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Example 4.6

find the energy of 𝑥 [𝑛] and the power of the periodic signal 𝑦[𝑛] shown below

Solution:

𝐸𝑥 =

5∑︁
𝑛=0

𝑛2 = 55

the period of signal 𝑦 is 𝑁0 = 6, hence

𝑃𝑦 =
1

𝑁0

𝑁0−1∑︁
𝑛=0

|𝑦[𝑛] |2 =
1

6

5∑︁
𝑛=0

𝑛2 =
55

6
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Example 4.7

find the energy 𝐸𝑥 and power 𝑃𝑥 of the signal 𝑥 [𝑛] = 3 cos(𝜋𝑛/4)

Solution: notice that 𝑥 [𝑛] is 8-periodic and, therefore, a power signal:

𝑃𝑥 =
1

8

7∑︁
𝑛=0

|𝑥 [𝑛] |2 =
1

8

[
2(3)2 + 4(3/

√︁
(2)2

]
=
1

8
[18 + 18] = 9

2
= 4.5

since 0 < 𝑃𝑥 < ∞, we know that 𝐸𝑥 = ∞

we can verify this power calculation in Matlab:

x = @(n) 3*cos(pi*n/4); n = 0:7;

Px = sum((x(n)).^2)/8

[output is Px = 4.5000]
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Exercises

■ show that the signal 𝑥 [𝑛] = 𝑎𝑛𝑢[𝑛] is
– an energy signal with energy 𝐸𝑥 = 1/(1 − |𝑎 |2) if |𝑎 | < 1

– a power signal with power 𝑃𝑥 = 1/2 if |𝑎 | = 1

– neither an energy signal nor a power signal if |𝑎 | > 1

■ show that the power of a signal 𝐷𝑒 𝑗 (2𝜋/𝑁0 )𝑛 is |𝐷 |2
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Nonuniqueness of DT sinusoids

■ observe that cos(Ω𝑛) = cos[(Ω + 2𝜋𝑚)𝑛] for integer 𝑚

■ therefore, two DT sinusoids with frequencies Ω and Ω + 2𝜋𝑚 are identical

Example:

𝑥1 [𝑛] = cos
(
2𝜋𝑛
5

)

𝑥2 [𝑛] = cos
(
12𝜋𝑛

5

)

𝑥2 [𝑛] = cos( 12𝜋𝑛5 ) = cos( 2𝜋𝑛5 + 2𝜋𝑛) = 𝑥1 [𝑛]
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Fundamental band of DT sinusoids

■ because 𝑒 𝑗2𝜋𝑚 = 1 for all integer values of 𝑚, we have 𝑒 𝑗Ω𝑛 = 𝑒 𝑗 (Ω±2𝜋𝑚)𝑛

for any integer 𝑚

■ the DT exponenetial 𝑒 𝑗Ω𝑛 (or sinusoid) has a unique waveform only in a range
separated by 2𝜋

Fundamental band

■ the values of Ω in the range −𝜋 to 𝜋 is called the fundamental band

■ every frequency Ω, no matter how large, is identical to some frequency, Ω𝑎, in
the fundamental band (−𝜋 ≤ Ω𝑎 < 𝜋), where

Ω𝑎 = Ω − 2𝜋𝑚 − 𝜋 ≤ Ω𝑎 < 𝜋 and 𝑚 integer
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Apparent frequency

the fundamental or apparent frequency for a discrete-time sinusoid with
frequency Ω is equal to |Ω𝑎 | (the value in the range 0 to 𝜋 that gives an
equivalent siunsoid)

■ example: cos(8.7𝜋𝑛 + 𝜃) = cos(0.7𝜋𝑛 + 𝜃), so apparent frequency is
|Ω𝑎 | = 0.7𝜋

■ since cos(−Ω𝑛 + 𝜃) = cos(Ω𝑛 − 𝜃), a frequency in the range −𝜋 to 0 is
identical to the frequency (of the same magnitude) in the range 0 to 𝜋 (but
with a change in phase sign)

■ example: cos(9.6𝜋𝑛 + 𝜃) = cos(−0.4𝜋𝑛 + 𝜃) = cos(0.4𝜋𝑛 − 𝜃), so the
apparent frequency is |Ω𝑎 | = 0.4𝜋
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the plot below shows the fundamental band frequency Ω𝑎 versus the frequency
Ω of a sinusoid; the frequency Ω𝑎 is modulo 2𝜋 value of Ω
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Example 4.8

express the following signals in terms of their apparent frequencies:

(a) cos(0.5𝜋𝑛 + 𝜃)
(b) cos(1.6𝜋𝑛 + 𝜃)
(c) sin(1.6𝜋𝑛 + 𝜃)
(d) cos(2.3𝜋𝑛 + 𝜃)
(e) cos(34.699𝑛 + 𝜃)
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Solution:

(a) Ω = 0.5𝜋 is in the reduced range already; because Ω𝑎 = 0.5𝜋, there is no
phase reversal, and the apparent sinusoid is cos(0.5𝜋𝑛 + 𝜃)

(b) 1.6𝜋 = −0.4𝜋 + 2𝜋 so that Ω𝑎 = −0.4𝜋 and |Ω𝑎 | = 0.4; also, Ω𝑎 is negative,
implying sign change for the phase; hence, the apparent sinusoid is
cos(0.4𝜋𝑛 − 𝜃)

(c) we first convert the sine to cosine sin(1.6𝜋𝑛 + 𝜃) = cos(1.6𝜋𝑛− (𝜋/2) + 𝜃);
in part (b), we found Ω𝑎 = −0.4𝜋; hence, the apparent sinusoid is
cos(0.4𝜋𝑛+ (𝜋/2) − 𝜃) = − sin(0.4𝜋𝑛 − 𝜃); in this case, both the phase and
the amplitude change signs

(d) 2.3𝜋 = 0.3𝜋 + 2𝜋 so that Ω𝑎 = 0.3𝜋; hence, the apparent sinusoid is
cos(0.3𝜋𝑛 + 𝜃)

(e) we have 34.699 = −3 + 6(2𝜋); hence, Ω𝑎 = −3, and the apparent frequency
|Ω𝑎 | = 3 rad/sample; because Ω𝑎 is negative, there is a sign change of the
phase and the apparent sinusoid is cos(3𝑛 − 𝜃)
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Aliasing and sampling rate

■ a continuous-time sinusoid cos𝜔𝑡 sampled every 𝑇 seconds (𝑡 = 𝑛𝑇) results
in a discrete-time sinusoid cos𝜔𝑛𝑇 , which is cosΩ𝑛 with Ω = 𝜔𝑇

■ the discrete-time sinusoids cosΩ𝑛 have unique waveforms only for the values
of frequencies in the range Ω < 𝜋 or 𝜔𝑇 < 𝜋

■ therefore, samples of continuous-time sinusoids of two (or more) different
frequencies can generate the same discrete-time signal

■ this phenomenon is known as aliasing because through sampling, two
entirely different analog sinusoids take on the same ”discrete-time” identity

Example: samples of two sinusoids cos 12𝜋𝑡 and cos 2𝜋𝑡 taken every 0.2
second

■ the corresponding discrete-time frequencies (Ω = 𝜔𝑇 = 0.2𝜔) are cos 2.4𝜋
and cos 0.4𝜋

■ the apparent frequency of 2.4𝜋 is 0.4𝜋, identical to the discrete-time
frequency corresponding to the lower sinusoid

aliasing and DT sinusoids 4.48



■ aliasing causes ambiguity in digital signal processing, which makes it
impossible to determine the true frequency of the sampled signal

■ for instance, digitally processing a continuous-time signal that contains two
distinct components of frequencies 𝜔1 and 𝜔2 > 𝜔1; if 𝜔2 − 𝜔1 = 2𝑘𝜋/𝑇),
the the sampled frequencies Ω1 = 𝜔1𝑇 and Ω2 = 𝜔2𝑇 will be read as the
same (lower of the two) frequency by the digital processor; as a result, the
higher-frequency component 𝜔2 not only is lost for good, but also it
reincarnates as a component of frequency 𝜔1, thus distorting the true
amplitude of the original component of frequency 𝜔1
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Avoiding aliasing

■ to avoid aliasing, the frequencies of the continuous-time sinusoids to be
processed should be kept within the fundamental band 𝜔𝑇 ≤ 𝜋 or 𝜔 ≤ 𝜋/𝑇

■ this is because any continuous-time sinusoid of frequency in this range has a
unique waveform when it is sampled

if 𝜔ℎ = 2𝜋 𝑓ℎ is the highest frequency to be processed, then, to avoid aliasing,

𝑓ℎ <
1

2𝑇
or 𝑇 <

1

2 𝑓ℎ

since the sampling frequency 𝑓𝑠 is the reciprocal of the sampling interval 𝑇 , we
can also express

𝑓𝑠 =
1

𝑇
> 2 𝑓ℎ or 𝑓ℎ <

𝑓𝑠

2

this result is a special case of the well-known sampling theorem; It states that for
a discrete-time system to process a continuous-time sinusoid, the sampling rate
must be greater than twice the frequency (in hertz) of the sinusoid
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Example 4.9

(a) Determine the maximum sampling interval 𝑇 that can be used in a
discrete-time oscillator that generates a sinusoid of 50 kHz

Solution: 𝑇 < 1/(2 𝑓ℎ) = 10 𝜇s; the sampling frequency is 𝑓𝑠 = 1/𝑇 > 100
kHz

(b) a discrete-time amplifier uses a sampling interval 𝑇 = 25‘𝜇s; what is the
highest frequency of a signal that can be processed with this amplifier without
aliasing?

Solution: 𝑓ℎ < 1/2𝑇 = 20 kHz
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Exercise

state with reasons whether the following sinusoids are periodic; if periodic, find
the fundamental period 𝑁0, and determine whether the fundamental frequency is
equal to the sinusoid’s frequency

(a) cos(3𝜋𝑛/7)
(b) cos(10𝑛/7)
(c) cos(

√
𝜋𝑛)

(d) sin(2.35𝜋𝑛 + 1)
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