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Discrete-time signals

a discrete-time (DT) signal is a function defined over an integer variable

x[n] where ne{...,-1,0,1,...}

= asequence of numbers ..., x[-1],x[0],x[1],...

= a CT signal x(¢) can be transformed into a DT signal by sampling it x[n] = x(¢,;) over

discrete instants {t,},n=0,1,2,...

= examples:
x[n] x[n] x[n]
n
n n
stock market weekly average samples from exponentially
daily averages tempratures damped sinusoid

DT signals
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uniform sampling a continuous-time signal x(¢) gives a DT signal:

= 7 is an integer

Uniform sampling

x[n] = x(nT)

= T is sampling period or sampling interval

+ln] | or x(nT)
HU UHU“TITOHM"*

Example: sampling x(¢) = e~ with T = 0.1:

x[n] =e

DT signals

—nT:e

“O0dn =, -2,-1,0,1,2, ...
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Causal and periodic signals

a signal x[n] is causal if
x[n] =0, n<0

= asignal x[n] is anticausalif x[n] =0, n = 0

= a signal that starts before n = 0 is called noncausal

Periodic signals: a signal x[n] is periodic if for some positive constant N:

x[n] =x[n+ N], foralln

= fundamental period Ny is the minimum N, such that the above holds

= fundamental frequency is Fy = 1/Ny cycles/sample and Qg = 27/ Ny
radians/sample

= a periodic signal must start at n = —oco and continue forever
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Discrete-time sinusoid

A cos(Qn+0) = Acos(2nFn + 0)

= A is the amplitude, 0 is the phase in radians

the frequency €2 has dimension radians per sample

= F = Q/2m with dimension cycles (radians/2r) per sample
= uniform sampling of x(¢) = cos wt with sampling rate T seconds gives

x[n] = cos(wnT) = cos(Qn) where Q=T

Periodicity of DT sinusoid: the DT sinusoid x[n] = cos(Qn) = cos(2nFn) is
periodic if QN = 27m for some non-zero integers m and N

= implies DT sinusoid is periodic if F = m/N is a rational number

= if F =mgy/Ny expressed in simplest form, then Ny is the fundamental period
in samples/cycle
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Examples
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Sum periodic signals
the sum of periodic DT signals is always periodic
= let x1[n] and x2[n] be periodic with fundamental periods Ny; and Ngo
x[n] = x1[n] +x2[n]

= x[n] is periodic and the period is the least common multiple of Ny; and Nyo

= if No1/No2 = p/q for some integers p and g in smallest form, then
No = LCM(Ng1, No2) = gNo1 = pNyo is the fundamental period of x[n]

Example:
x[n] =2cos(9nn/4) — 3sin(67n/5)

we can write the function as
x[n] = 2cos(27(9/8)n) — 3sin(27(3/5)n)
we have Ny, = 8 and Ny» = 5; hence x[n] is periodic and Ny = LCM(8, 5) = 40
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Discrete-time exponential

the discrete-time exponential function is

x[n] =y
= can be expressed in usual form y" = e where y = e*

» for discrete-time signals, y" is preferred over e

Complex exponential: for complex vy = re/® we get

x[n] = r"e/ = " (cos Qn + j sin Qn)

= the frequency is |Q|
= the angle is nQ
jQn

= in complex plane, ¢/**" is a point on a unit circle at an angle Qn

DT signals
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Nature of y"

Nature of "
» e grows exponentially with n if Re 4 > 0 (1in RHP)

= ¢V decays exponentially with 7 if Re 1 < 0 (1 in LHP)

= ¢ constant or oscillate if Re 2 = 0 (A on imaginary axis)

Nature of y"
= y" grows exponentially with # if |y| > 1 (y outside unit circle)

= y" decays exponentially with n if |y| < 1 (y inside unit circle)

= y" is a constant or oscillate if |y| = 1 (y on unit circle)

DT signals
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LHP

=
£
g
2
3
- = Exponentially
| decreasing
|
Q
|
2
8]
A Plane

« for A =a+ jb, we have e = y" where y = e = e?e/?
« hence, |y| = |e?||e/?| = e¢

DT signals
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Behavior of y" for real y

0<y<l1

man”HH

DT signals

-1<y<0
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Plotting DT signals in Matlab

we can use Matlab to discrete-time signals

Example: the code below plots the following signals over (0 < n < 8)
(@) xq[n] =(0.8)"

(b) xp[n] = (-0.8)"

(©) xc[n] = (0.5)"

(d) xa[n] = (1.1)"

n = (0:8); x_a = @(n) (0.8)."n; x_b = @(n) (-0.8).7(n);

x_c = @(n) (0.5).”n; x_.d = @(n) (1.1).°n;

subplot(2,2,1); stem(n,x_a(n),’k’); ylabel(’x_al[n]’); xlabel(’n’);
subplot(2,2,2); stem(n,x_b(n),’k’); ylabel(’x_b[n]’); xlabel(’n’)

subplot(2,2,3); stem(n,x_c(n),’k’); ylabel(’x_c[n]’); xlabel(’n’);

subplot(2,2,4); stem(n,x_d(n),’k’); ylabel(’x_d[n]’); xlabel(’n’);

DT signals
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X,[n]

Xc[n]
o

DT signals

2 4
(T??.
2 4

Xp[n]

Xg4[n]

L
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Example: the code below plots cos({5n + 7) over the range —30 < n < 30

n = (-30:30); x = @(n) cos(n*pi/12+pi/4);
clf; stem(n,x(n),’k’); ylabel(’x[n]’); xlabel(’n’);

I el
lJH Hll llH “Jl ll

10 20 30

x[n]
(=)
Y
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Exercises

= show that the following equalities holds

() (0.25)7" = 4" () e~ = (0.2231)" = (4.4817)™"
(b) 4 =(0.25)" (f) (0.5)1 = ¢=0-693n

(©) €3 = (20.086)" (@) (0.8)~" = ¢0-2231n

(d) on — O 693n

= determine and sketch the DT exponentials y"* that result from sampling
(T = 1) the following CT exponentials:

(@ €° (e) 2f )
b f) 27
((C; Z—O 6931t ((g; e—t/4
(d) ( 6_0 6931[)[ (h) ejﬂt

for each case, locate the value y in the complex plane and state whether y" is
exponentially decaying, exponentially growing, or non-decaying

DT signals 4.16
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Time-shifting

the signal x[n] can be shifted to the right or left by ng > 0 units

Example:

signal operations

x[n = no]

x[n+ ng]

(right-shifted (delayed) signal)
(left-shifted (advanced) signal)

x[n]
14 (0.9)"
%M
—10 -5 0 3 5 10 15 20 n
x[n - 5]
14 (0.9)"=2
o 1111y
-10 — 8 10 15 20 n
(0.9)7+10, | x[n+10]
| o000 600000000 e¢00e0é00
—10 7 0 5 10 15 20 n
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Time reversal

the time reversal operation x[—n] rotates x[n] about the vertical axis

Example:
14

(a)
—0-9090000 90900904
~10 -5 0
(0.9)™" 1

(b)
-10 -5 -3 0

signal operations



Time-reversal and shifting

the time-reversal and shifting operation is x[k — n]
time reverse (right) shift by k

1. x[n]  —  x[-n] —  x[-(n-k)] =x[k —n]
(left) shift by & time reverse

2. x[n]  —  x[n+k] — x[k-n]

Example: find x[2 — n]

x[n]
1+ (0.9)"
(a) I III I
—6-0400060400009
~10 5 0 3 5 10 15 20 n
x[-n]
(0.9)7™"
(b)
] eeeererryeees
~10 -5 -3 0 5 10 15 20 n
x[20 - n]
L (0_9)20—n
(c)
—604006060400009
—10 -5 0 5 10 15 17 20 n
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Example 4.1

plot x[5 — n] for the signal x[n]

aln]

HHHH

T xlnl = xln = 51

i

! x[n] = al=n]

_yilll] |

il

signal operations
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Downsampling (time compression)

downsampling is the compression of x[n] by integer factor M:
xq[n] = x[Mn]

= x[Mn] selects every Mth sample of x[n] (x[0],x[M],x[2M],...)

= reduces the number of samples by factor M (loss of samples)

= if x[n] is obtained by sampling a continuous-time signal, this operation
implies reducing the sampling rate by factor M

xgln] x4ln] = x[2n]

Downsampling

2 4 6 8 10 12 14 16 18 20

n—=
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Upsampling and interpolation

upsampling is the expansion of x[n] by integer factor L
x[n/L] n=0,+L,+2L,...
xe[n] = . .
0 otherwise (n/L noninteger)

= ingeneral,forn=0,1,2,..., x.[n] is:

x[0],0,0,...,0,x[1],0,0,...,0,x[2],0,0,...,0,x[3],...
N —’ N ——— N ———
L—-1 zeros L—1 zeros L-1 zeros

= the sampling rate of x.[n] is L times that of x[n]

Interpolation
= the process of filling-in the zero-valued samples is called interpolation

= for example, using linear interpolation for L = 2, the zero (odd-numbered)
samples are replaced by:

xi[n] = §(xe[n = 1] +xe[n+1])
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Example

Upsampling

signal operations




sketch x[—15 — 3n] for the DT signal show below

Example 4.2

1.4
1.2

1

0.8

0.6

0.4
0.2

oo
-12 -10 -8 -6 -4 -2

0

2

4

6

8

oo/l
10 12

Solution: we write x[—-15 — 3n] = x[-3(n + 5)] and then follows the steps given

next

signal operations
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= compress x[n] by 3 to get x[3n]
>

1

0.8

0.6

03 I

0
-12 -10 -8 6 -4 -2 0 2 4 6 8 10 12

= time-reverse x[3n] to get x[—3n]

1.4

1.2
1

0.8

0.6

0.4

0.2 {

0 n
12210 8 -6 4 2 0 2 4 6 8 10 12

= left-shift x[—3n] by 5 to obtain x[-3(n + 5)] = x[-15 — 3n]

1.4

1.2
1

0.8

0.6

0.4

02 |

0,
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
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Even and odd signals
= afunction x, [n] is even if x. [n] = x.[—n]
= a function x, [n] is odd if x, [1n] = —x, [—n]

even dd

il -, - i py—

every signal x[n] can expressed as

x[n] = 3[x[n] +x[-n]]+ 5 [x[n] = x[-n]]

even odd

signal operations 4.26



Example 4.3

find the even and odd parts of the function, x[n] = sin(2zn/7) (1 + n?)

Solution: the even part is

sin(27n/7) (1 +n?) +sin(-27n/7) (1 + (-n)?)

=0
2

Xe[n] =
the odd part is

sin(2zn/7) (1 +n?) - sin(=272n/7) (1 + (-n)?)
Xo[n] =
2
sin(27n/7)(1 + n?)

the function is odd since the even part is zero

signal operations
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Properties

Multiplications

even function X odd function = odd function
odd function X odd function = even function

even function X even function = even function

Symmetric summation of even function: for positive integer N

N N
Z x[n] =x[0] +2 Zx[n] (x[n] is even)
n=—N n=1

Symmetric summation of odd function: for positive integer N

N

> x[n]=0  (x[n]is odd)

signal operations 4.28



Exercises

= show that x[n] = (0.9)" for 3 < n < 10 and zero otherwise left-shifted by 3
units can be expressed as 0.729(0.9)" for 0 < n < 7, and zero otherwise;
sketch the shifted signal

= show that x[—k — n] can be obtained from x[n] by first right-shifting x[n] by
k units and then time-reversing this shifted signal

= sketch the signal x[n] = e~95" for =3 < n < 2, and zero otherwise; sketch
the corresponding time-reversed signal and show that it can be expressed as
xr[n] =% for -2 <n <3

signal operations 4.29



Exercises

= consider the signal x[n] = cos(2nn/4), which are samples of the signal
cos(2nt) taken at sampling rate T = 1/4; sketch x[n], x[2n], and x[4n];
comment on the results

= the operation x[2n] represents a compression by 2 that preserves the
even-numbered samples of the original signal x[n]; show that x[2n + 1] also
compresses x[n] by a factor of 2, but preserves the odd-numbered samples

= plot y[n] = x[3n — 1] for the signal x[n] shown below

x[n]
4
3
2
!

T 4

J; INY ‘.) =

signal operations 4.30
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Unit step and unit ramp

(discrete-time) unit-step

{12! jiAiint

‘0 35 n—e
also called unit-step sequence
(discrete-time) unit-ramp
rampl[n]
[n] n n>0 [n]
rampin| = =nu|n
P 0, n<0
also called unit-ramp sequence 1] | n
4 8
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Unit impulse

(discrete-time) unit-impulse

1 n=0
é[n] =
0 n#0

8[n]

= also called unit sample function or Kronecker delta function

= defined everywhere (unlike continuous case)

= §[n] = é[an] for any integer a # 0

unit periodic impulse (impulse train)
Syln]

snlnl= > 6ln-mN]

pS

useful DT signals
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Properties
= multiplication by DT impulse:

x[n]d[n— k] =x[k]d[n — k]

= sampling or sifting property:

[oe]

x[n] = > x[k]6[n - k]

k=—o00
Relation between unit step and unit impulse

n

uln] = 6[k]

k=—0c0

6[n] =uln] —u[n-1]

useful DT signals
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Rectangular sequence

the function
uln —n1] —uln - nz]

with ny < ns is a rectangular sequence from 7y until (ny — 1)

Example:

useful DT signals 4.34



Example 4.4

describe the signal x[7] by a single expression valid for all n using unit-sequence

x[n]

Solution: there are many ways to describe the signal using different but
equivalent expressions; one expression is

x[n] =n(u[n] —u[n->5]) +4(u[n-5] —u[n-11]) — 26[n — 8]

useful DT signals 4.35



Outline

o DT signals

e signal operations

e useful DT signals

e signal energy and power

e aliasing and DT sinusoids



Energy and power signals

Energy of signal

Ex= )Y |x[n]

n=—oo

= finite if |x[n]| — 0 as |n| — oo; infinite otherwise
= if E is finite, the signal is called an energy signal
Power of a signal

N

1
Py = li > 2
TTNDeAN AT A sl

s P, is the time average (mean) of |x[n]|?
= VP, is the rms (root-mean-square) value of x(7)

= if P, is finite and nonzero, the signal is called a power signal

, also called average power

signal energy and power

4.36



= an energy signal has zero power
= a power signal has infinite energy
= hence, a signal cannot be both an energy signal and a power signal

= some signals are neither energy nor power signals

Periodic signals power: a periodic signal x[n] with period Ny has power

mo+Np—1

1
P, = — Z Ix[n]]? = — Z lx[n]|>  for any integer my
No No NO

n=mg

signal energy and power 4.37



Example 4.5

find the energy of the signal x[n] = (1/2)"u[n]

Solution:

using the formula, Y., r"* =

signal energy and power

Z (3)" ulnf’ -ZI%

1r’

x =

i
o

I
NE
e

S
Il
(=)

|r| < 1, we obtain

1 4

1-1/4 3

||
NE
T
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Example 4.6
find the energy of x[n] and the power of the periodic signal y[n] shown below

x[n]

,TTII

ylnl

eI ISR 1 RS A S A S

—6 0 6 12 18 n—s

Solution:

e ° 55
Py=qo 2 bl =5 n*=
n=0 n=0
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Example 4.7

find the energy E and power P, of the signal x[n] = 3 cos(nn/4)

Solution: notice that x[n] is 8-periodic and, therefore, a power signal:

7
Pe= 3 DIl = £ [23)7 + 43427
n=0

1 9
=—-[18+18] = - =45
g8 181 =3
since 0 < P, < oo, we know that E, = oo

we can verify this power calculation in Matlab:

x = @(n) 3*cos(pi*n/4); n = 0:7;
Px = sum((x(n))."2)/8

[output is Px = 4.5000]

signal energy and power 4.40



Exercises

= show that the signal x[n] = a™u[n] is
— an energy signal with energy Ex = 1/(1 — |a|?) if |a] < 1

— a power signal with power P = 1/2if |a| =1

— neither an energy signal nor a power signal if |a| > 1

= show that the power of a signal De/ (27/No)n i | D|2

signal energy and power
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Nonuniqueness of DT sinusoids

= observe that cos(Qn) = cos[(Q + 27rm)n] for integer m
= therefore, two DT sinusoids with frequencies Q and Q + 27m are identical
Example:

)

x1[n] = cos (

L
© 10
"

xo[n] = cos(lz%) = cos(Q% +27n) = x1[n]

aliasing and DT sinusoids 4.42



Fundamental band of DT sinusoids

= because ¢/27™ =1 for all integer values of m, we have ¢/ = ¢/ (@27m)n
for any integer m

» the DT exponenetial e/ (or sinusoid) has a unique waveform only in a range
separated by 27

Fundamental band
= the values of Q in the range —x to x is called the fundamental band

= every frequency Q, no matter how large, is identical to some frequency, Q, in
the fundamental band (-7 < Q, < 7), where

Q,=Q-2mm -n1<Q,<m and minteger

aliasing and DT sinusoids 4.43



Apparent frequency

the fundamental or apparent frequency for a discrete-time sinusoid with
frequency Q is equal to |Q,| (the value in the range 0 to 7 that gives an
equivalent siunsoid)

= example: cos(8.7nn + 0) = cos(0.7zn + #), so apparent frequency is
Q4] =0.77

= since cos(—Qn + 0) = cos(Qn — ), a frequency in the range —x to 0 is
identical to the frequency (of the same magnitude) in the range 0 to 7 (but
with a change in phase sign)

= example: cos(9.6n + 0) = cos(—0.4zn + 0) = cos(0.47n — 6), so the
apparent frequency is |Q,| = 0.4x

aliasing and DT sinusoids 4.44



the plot below shows the fundamental band frequency €, versus the frequency
Q of a sinusoid; the frequency Q,, is modulo 27 value of Q

=2 ;‘n'

1)

"

0.4

-2 -

aliasing and DT sinusoids

47 Q—>
3.6m
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Example 4.8

express the following signals in terms of their apparent frequencies:
(@) cos(0.57n + 0)

(b) cos(1.6mn + 6)

(c) sin(1.6zn +6)

(d) cos(2.37n +6)

(e) cos(34.699n + 0)

aliasing and DT sinusoids
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Solution:

(a) € = 0.57 is in the reduced range already; because €, = 0.5, there is no
phase reversal, and the apparent sinusoid is cos(0.57n + 6)

(b) 1.6m = —0.47 + 27 so that Q, = —0.47 and |Q,| = 0.4; also, Q,, is negative,
implying sign change for the phase; hence, the apparent sinusoid is
cos(0.47n — 0)

(c) we first convert the sine to cosine sin(1.6zrn + 6) = cos(1.6nrn— (/2) + 0);
in part (b), we found Q, = —0.47; hence, the apparent sinusoid is
cos(0.4nn+ (/2) — 0) = —sin(0.4zwn — 6); in this case, both the phase and
the amplitude change signs

(d) 2.37 =0.37 + 27 so that Q, = 0.37; hence, the apparent sinusoid is
cos(0.3mn + 6)

(e) we have 34.699 = -3 + 6(27); hence, Q, = —3, and the apparent frequency
|Q,| = 3 rad/sample; because €, is negative, there is a sign change of the
phase and the apparent sinusoid is cos(3n — )

aliasing and DT sinusoids 4.47



Aliasing and sampling rate

= a continuous-time sinusoid cos wt sampled every T seconds (¢ = nT) results
in a discrete-time sinusoid cos wnT', which is cos Qn with Q = wT

= the discrete-time sinusoids cos Qn have unique waveforms only for the values
of frequencies in the range Q < mor WT < 7

= therefore, samples of continuous-time sinusoids of two (or more) different
frequencies can generate the same discrete-time signal

= this phenomenon is known as aliasing because through sampling, two
entirely different analog sinusoids take on the same "discrete-time” identity

Example: samples of two sinusoids cos 127¢ and cos 27t taken every 0.2
second

= the corresponding discrete-time frequencies (Q = wT = 0.2w) are cos 2.4
and cos 0.47

= the apparent frequency of 2.4x is 0.4, identical to the discrete-time
frequency corresponding to the lower sinusoid

aliasing and DT sinusoids 4.48



cos 127t
f=6Hz

0 0.2 0.4

fy=5Hz

= aliasing causes ambiguity in digital signal processing, which makes it
impossible to determine the true frequency of the sampled signal

= for instance, digitally processing a continuous-time signal that contains two
distinct components of frequencies w1 and ws > wq; if wo — w1 = 2kn/T),
the the sampled frequencies Q1 = w1T and Qs = w-T will be read as the
same (lower of the two) frequency by the digital processor; as a result, the
higher-frequency component w, not only is lost for good, but also it
reincarnates as a component of frequency w1, thus distorting the true
amplitude of the original component of frequency w1

aliasing and DT sinusoids 4.49



Avoiding aliasing

= to avoid aliasing, the frequencies of the continuous-time sinusoids to be
processed should be kept within the fundamental band wT < morw < /T

= this is because any continuous-time sinusoid of frequency in this range has a
unique waveform when it is sampled

if wy, = 271 fy, is the highest frequency to be processed, then, to avoid aliasing,

1 1
<— o T<_—
o< 57 2
since the sampling frequency f; is the reciprocal of the sampling interval T, we
can also express

1 fs
==>2 or < =
fs T fh fh 2
this result is a special case of the well-known sampling theorem; It states that for
a discrete-time system to process a continuous-time sinusoid, the sampling rate
must be greater than twice the frequency (in hertz) of the sinusoid

aliasing and DT sinusoids 4.50



Example 4.9

(a) Determine the maximum sampling interval 7" that can be used in a
discrete-time oscillator that generates a sinusoid of 50 kHz

Solution: 7' < 1/(2f) = 10 us; the sampling frequency is f; = 1/T > 100
kHz

(b) a discrete-time amplifier uses a sampling interval 7' = 25°us; what is the
highest frequency of a signal that can be processed with this amplifier without
aliasing?

Solution: f;; < 1/2T =20 kHz

aliasing and DT sinusoids 4.51



Exercise

state with reasons whether the following sinusoids are periodic; if periodic, find
the fundamental period Ny, and determine whether the fundamental frequency is

equal to the sinusoid’s frequency
(@) cos(3mn/7)

(b) cos(10n/7)

(c) cos(ymn)

(d) sin(2.357n + 1)

aliasing and DT sinusoids 4.52
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