4. Discrete-time signals

- DT signals
- signal operations
- useful DT signals
- signal energy and power
- aliasing and DT sinusoids

Discrete-time signals

a discrete-time (DT) signal is a function defined over an integer variable

$$
x[n] \text { where } n \in\{\ldots,-1,0,1, \ldots\}
$$

- a sequence of numbers $\ldots, x[-1], x[0], x[1], \ldots$
- a CT signal $x(t)$ can be transformed into a DT signal by sampling it $x[n]=x\left(t_{n}\right)$ over discrete instants $\left\{t_{n}\right\}, n=0,1,2, \ldots$
- examples:
 daily averages

weekly average tempratures

samples from exponentially damped sinusoid

Uniform sampling

uniform sampling a continuous-time signal $x(t)$ gives a DT signal:

$$
x[n]=x(n T)
$$

- n is an integer
- T is sampling period or sampling interval

Example: sampling $x(t)=e^{-t}$ with $T=0.1$:

$$
x[n]=e^{-n T}=e^{-0.1 n} \quad n=\ldots,-2,-1,0,1,2, \ldots
$$

Causal and periodic signals

a signal $x[n]$ is causal if

$$
x[n]=0, \quad n<0
$$

- a signal $x[n]$ is anticausal if $x[n]=0, n \geq 0$
- a signal that starts before $n=0$ is called noncausal

Periodic signals: a signal $x[n]$ is periodic if for some positive constant N :

$$
x[n]=x[n+N], \quad \text { for all } n
$$

- fundamental period N_{0} is the minimum N, such that the above holds
- fundamental frequency is $F_{0}=1 / N_{0}$ cycles/sample and $\Omega_{0}=2 \pi / N_{0}$ radians/sample
- a periodic signal must start at $n=-\infty$ and continue forever

Discrete-time sinusoid

$$
A \cos (\Omega n+\theta)=A \cos (2 \pi F n+\theta)
$$

- A is the amplitude, θ is the phase in radians
- the frequency Ω has dimension radians per sample
- $F=\Omega / 2 \pi$ with dimension cycles (radians/ 2π) per sample
- uniform sampling of $x(t)=\cos \omega t$ with sampling rate T seconds gives

$$
x[n]=\cos (\omega n T)=\cos (\Omega n) \quad \text { where } \quad \Omega=\omega T
$$

Periodicity of DT sinusoid: the DT sinusoid $x[n]=\cos (\Omega n)=\cos (2 \pi F n)$ is periodic if $\Omega N=2 \pi m$ for some non-zero integers m and N

- implies DT sinusoid is periodic if $F=m / N$ is a rational number
- if $F=m_{0} / N_{0}$ expressed in simplest form, then N_{0} is the fundamental period in samples/cycle

Examples

Sum periodic signals

the sum of periodic DT signals is always periodic

- let $x_{1}[n]$ and $x_{2}[n]$ be periodic with fundamental periods N_{01} and N_{02}

$$
x[n]=x_{1}[n]+x_{2}[n]
$$

- $x[n]$ is periodic and the period is the least common multiple of N_{01} and N_{02}
- if $N_{01} / N_{02}=p / q$ for some integers p and q in smallest form, then $N_{0}=\operatorname{LCM}\left(N_{01}, N_{02}\right)=q N_{01}=p N_{02}$ is the fundamental period of $x[n]$

Example:

$$
x[n]=2 \cos (9 \pi n / 4)-3 \sin (6 \pi n / 5)
$$

we can write the function as

$$
x[n]=2 \cos (2 \pi(9 / 8) n)-3 \sin (2 \pi(3 / 5) n)
$$

we have $N_{01}=8$ and $N_{02}=5$; hence $x[n]$ is periodic and $N_{0}=\operatorname{LCM}(8,5)=40$

Discrete-time exponential

the discrete-time exponential function is

$$
x[n]=\gamma^{n}
$$

- can be expressed in usual form $\gamma^{n}=e^{\lambda n}$ where $\gamma=e^{\lambda}$
- for discrete-time signals, γ^{n} is preferred over $e^{\lambda n}$

Complex exponential: for complex $\gamma=r e^{j \Omega}$, we get

$$
x[n]=r^{n} e^{j \Omega n}=r^{n}(\cos \Omega n+j \sin \Omega n)
$$

- the frequency is $|\Omega|$
- the angle is $n \Omega$
- in complex plane, $e^{j \Omega n}$ is a point on a unit circle at an angle Ωn

Nature of γ^{n}

Nature of $e^{\lambda n}$

- $e^{\lambda n}$ grows exponentially with n if $\operatorname{Re} \lambda>0$ (λ in RHP)
- $e^{\lambda n}$ decays exponentially with n if $\operatorname{Re} \lambda<0$ (λ in LHP)
- $e^{\lambda n}$ constant or oscillate if $\operatorname{Re} \lambda=0$ (λ on imaginary axis)

Nature of γ^{n}

- γ^{n} grows exponentially with n if $|\gamma|>1$ (γ outside unit circle)
- γ^{n} decays exponentially with n if $|\gamma|<1$ (γ inside unit circle)
- γ^{n} is a constant or oscillate if $|\gamma|=1$ (γ on unit circle)

- for $\lambda=a+j b$, we have $e^{\lambda n}=\gamma^{n}$ where $\gamma=e^{\lambda}=e^{a} e^{j b}$
- hence, $|\gamma|=\left|e^{a}\right|\left|e^{j b}\right|=e^{a}$

Behavior of γ^{n} for real γ

Behavior of γ^{n} for complex γ

Plotting DT signals in Matlab

we can use Matlab to discrete-time signals

Example: the code below plots the following signals over $(0 \leq n \leq 8)$
(a) $x_{a}[n]=(0.8)^{n}$
(b) $x_{b}[n]=(-0.8)^{n}$
(c) $x_{c}[n]=(0.5)^{n}$
(d) $x_{d}[n]=(1.1)^{n}$

```
n = (0:8); x_a = @(n) (0.8).^n; x_b = @(n) (-0.8).^(n);
x_c = @(n) (0.5).^n; x_d = @(n) (1.1).^n;
subplot(2,2,1); stem(n,x_a(n),'k'); ylabel('x_a[n]'); xlabel('n');
    subplot(2,2,2); stem(n,x_b(n),'k'); ylabel('x_b[n]'); xlabel('n');
subplot(2,2,3); stem(n,x_c(n),'k'); ylabel('x_c[n]'); xlabel('n');
subplot(2,2,4); stem(n,x_d(n),'k'); ylabel('x_d[n]'); xlabel('n');
```


Example: the code below plots $\cos \left(\frac{\pi}{12} n+\frac{\pi}{4}\right)$ over the range $-30 \leq n \leq 30$

```
\[
\mathrm{n}=(-30: 30) ; \mathrm{x}=@(\mathrm{n}) \cos (\mathrm{n} * \mathrm{pi} / 12+\mathrm{pi} / 4) ;
\]
clf; stem(n,x(n),'k'); ylabel('x[n]'); xlabel('n');
```


Exercises

- show that the following equalities holds
(a) $(0.25)^{-n}=4^{n}$
(e) $e^{-1.5 n}=(0.2231)^{n}=(4.4817)^{-n}$
(b) $4^{-n}=(0.25)^{n}$
(f) $(0.5)^{n}=e^{-0.693 n}$
(c) $e^{3 n}=(20.086)^{n}$
(g) $(0.8)^{-n}=e^{0.2231 n}$
(d) $2^{n}=e^{0.693 n}$
- determine and sketch the DT exponentials γ^{n} that result from sampling ($T=1$) the following CT exponentials:
(a) $e^{0 t}=1$
(e) 2^{t}
(b) e^{t}
(f) 2^{-t}
(c) $e^{-0.6931 t}$
(g) $e^{-t / 4}$
(d) $\left(-e^{-0.6931 t}\right)^{t}$
(h) $e^{j \pi t}$
for each case, locate the value γ in the complex plane and state whether γ^{n} is exponentially decaying, exponentially growing, or non-decaying

Outline

- DT signals
- signal operations
- useful DT signals
- signal energy and power
- aliasing and DT sinusoids

Time-shifting

the signal $x[n]$ can be shifted to the right or left by $n_{0}>0$ units

$$
\begin{array}{ll}
x\left[n-n_{0}\right] & \text { (right-shifted (delayed) signal) } \\
x\left[n+n_{0}\right] & \text { (left-shifted (advanced) signal) }
\end{array}
$$

Example:

Time reversal

the time reversal operation $x[-n]$ rotates $x[n]$ about the vertical axis

Example:

Time-reversal and shifting

the time-reversal and shifting operation is $x[k-n]$

1. $x[n] \xrightarrow{\text { time reverse }} x[-n] \xrightarrow{\text { (right) shitt by } k} x[-(n-k)]=x[k-n]$
2. $x[n] \xrightarrow{(\text { left }) \text { shift by } k} x[n+k] \xrightarrow{\text { time reverse }} x[k-n]$

Example: find $x[2-n]$

Example 4.1

plot $x[5-n]$ for the signal $x[n]$

Downsampling (time compression)

downsampling is the compression of $x[n]$ by integer factor M :

$$
x_{d}[n]=x[M n]
$$

- $x[M n]$ selects every M th sample of $x[n](x[0], x[M], x[2 M], \ldots)$
- reduces the number of samples by factor M (loss of samples)
- if $x[n]$ is obtained by sampling a continuous-time signal, this operation implies reducing the sampling rate by factor M

Upsampling and interpolation

upsampling is the expansion of $x[n]$ by integer factor L

$$
x_{e}[n]= \begin{cases}x[n / L] & n=0, \pm L, \pm 2 L, \ldots \\ 0 & \text { otherwise }(n / L \text { noninteger })\end{cases}
$$

- in general, for $n=0,1,2, \ldots, x_{e}[n]$ is:

$$
x[0], \underbrace{0,0, \ldots, 0}_{L-1 \text { zeros }}, x[1], \underbrace{0,0, \ldots, 0}_{L-1 \text { zeros }}, x[2], \underbrace{0,0, \ldots, 0}_{L-1 \text { zeros }}, x[3], \ldots
$$

- the sampling rate of $x_{e}[n]$ is L times that of $x[n]$

Interpolation

- the process of filling-in the zero-valued samples is called interpolation
- for example, using linear interpolation for $L=2$, the zero (odd-numbered) samples are replaced by:

$$
x_{i}[n]=\frac{1}{2}\left(x_{e}[n-1]+x_{e}[n+1]\right)
$$

Example

Example 4.2

sketch $x[-15-3 n]$ for the DT signal show below

Solution: we write $x[-15-3 n]=x[-3(n+5)]$ and then follows the steps given next

- compress $x[n]$ by 3 to get $x[3 n]$

- time-reverse $x[3 n]$ to get $x[-3 n]$

- left-shift $x[-3 n]$ by 5 to obtain $x[-3(n+5)]=x[-15-3 n]$

Even and odd signals

- a function $x_{e}[n]$ is even if $x_{e}[n]=x_{e}[-n]$
- a function $x_{o}[n]$ is odd if $x_{o}[n]=-x_{o}[-n]$

every signal $x[n]$ can expressed as

$$
x[n]=\underbrace{\frac{1}{2}[x[n]+x[-n]]}_{\text {even }}+\underbrace{\frac{1}{2}[x[n]-x[-n]]}_{\text {odd }}
$$

Example 4.3

find the even and odd parts of the function, $x[n]=\sin (2 \pi n / 7)\left(1+n^{2}\right)$
Solution: the even part is

$$
x_{e}[n]=\frac{\sin (2 \pi n / 7)\left(1+n^{2}\right)+\sin (-2 \pi n / 7)\left(1+(-n)^{2}\right)}{2}=0
$$

the odd part is

$$
\begin{aligned}
x_{o}[n] & =\frac{\sin (2 \pi n / 7)\left(1+n^{2}\right)-\sin (-2 \pi n / 7)\left(1+(-n)^{2}\right)}{2} \\
& =\sin (2 \pi n / 7)\left(1+n^{2}\right)
\end{aligned}
$$

the function is odd since the even part is zero

Properties

Multiplications

even function \times odd function $=$ odd function
odd function \times odd function $=$ even function
even function \times even function $=$ even function
Symmetric summation of even function: for positive integer N

$$
\sum_{n=-N}^{N} x[n]=x[0]+2 \sum_{n=1}^{N} x[n] \quad(x[n] \text { is even })
$$

Symmetric summation of odd function: for positive integer N

$$
\sum_{n=-N}^{N} x[n]=0 \quad(x[n] \text { is odd })
$$

Exercises

- show that $x[n]=(0.9)^{n}$ for $3 \leq n \leq 10$ and zero otherwise left-shifted by 3 units can be expressed as $0.729(0.9)^{n}$ for $0 \leq n \leq 7$, and zero otherwise; sketch the shifted signal
- show that $x[-k-n]$ can be obtained from $x[n]$ by first right-shifting $x[n]$ by k units and then time-reversing this shifted signal
- sketch the signal $x[n]=e^{-0.5 n}$ for $-3 \leq n \leq 2$, and zero otherwise; sketch the corresponding time-reversed signal and show that it can be expressed as $x_{r}[n]=e^{0.5 n}$ for $-2 \leq n \leq 3$

Exercises

- consider the signal $x[n]=\cos (2 \pi n / 4)$, which are samples of the signal $\cos (2 \pi t)$ taken at sampling rate $T=1 / 4$; sketch $x[n], x[2 n]$, and $x[4 n]$; comment on the results
- the operation $x[2 n]$ represents a compression by 2 that preserves the even-numbered samples of the original signal $x[n]$; show that $x[2 n+1]$ also compresses $x[n]$ by a factor of 2 , but preserves the odd-numbered samples
- plot $y[n]=x[3 n-1]$ for the signal $x[n]$ shown below

Outline

- DT signals
- signal operations
- useful DT signals
- signal energy and power
- aliasing and DT sinusoids

Unit step and unit ramp

(discrete-time) unit-step

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0, & n<0\end{cases}
$$

also called unit-step sequence
(discrete-time) unit-ramp

$$
\operatorname{ramp}[n]=\left\{\begin{array}{ll}
n & n>0 \\
0, & n \leq 0
\end{array}=n u[n]\right.
$$

also called unit-ramp sequence

Unit impulse

(discrete-time) unit-impulse

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

- also called unit sample function or Kronecker delta function
- defined everywhere (unlike continuous case)
- $\delta[n]=\delta[a n]$ for any integer $a \neq 0$
unit periodic impulse (impulse train)

$$
\delta_{N}[n]=\sum_{m=-\infty}^{\infty} \delta[n-m N]
$$

Properties

- multiplication by DT impulse:

$$
x[n] \delta[n-k]=x[k] \delta[n-k]
$$

- sampling or sifting property:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

Relation between unit step and unit impulse

$$
\begin{aligned}
& u[n]=\sum_{k=-\infty}^{n} \delta[k] \\
& \delta[n]=u[n]-u[n-1]
\end{aligned}
$$

Rectangular sequence

the function

$$
u\left[n-n_{1}\right]-u\left[n-n_{2}\right]
$$

with $n_{1}<n_{2}$ is a rectangular sequence from n_{1} until $\left(n_{2}-1\right)$

Example:

Example 4.4

describe the signal $x[n]$ by a single expression valid for all n using unit-sequence

Solution: there are many ways to describe the signal using different but equivalent expressions; one expression is

$$
x[n]=n(u[n]-u[n-5])+4(u[n-5]-u[n-11])-2 \delta[n-8]
$$

Outline

- DT signals
- signal operations
- useful DT signals
- signal energy and power
- aliasing and DT sinusoids

Energy and power signals

Energy of signal

$$
E_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

- finite if $|x[n]| \rightarrow 0$ as $|n| \rightarrow \infty$; infinite otherwise
- if E_{x} is finite, the signal is called an energy signal

Power of a signal

$$
P_{x}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}
$$

- P_{x} is the time average (mean) of $|x[n]|^{2}$, also called average power
- $\sqrt{P_{x}}$ is the rms (root-mean-square) value of $x(t)$
- if P_{x} is finite and nonzero, the signal is called a power signal
- an energy signal has zero power
- a power signal has infinite energy
- hence, a signal cannot be both an energy signal and a power signal
- some signals are neither energy nor power signals

Periodic signals power: a periodic signal $x[n]$ with period N_{0} has power

$$
P_{x}=\frac{1}{N_{0}} \sum_{N_{0}}|x[n]|^{2}=\frac{1}{N_{0}} \sum_{n=m_{0}}^{m_{0}+N_{0}-1}|x[n]|^{2} \quad \text { for any integer } m_{0}
$$

Example 4.5

find the energy of the signal $x[n]=(1 / 2)^{n} u[n]$

Solution:

$$
\begin{aligned}
E_{x}=\sum_{n=-\infty}^{\infty}\left|\left(\frac{1}{2}\right)^{n} u[n]\right|^{2}=\sum_{n=0}^{\infty}\left|\left(\frac{1}{2}\right)^{n}\right|^{2} & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{2 n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=1+\frac{1}{4}+\frac{1}{4^{2}}+\cdots
\end{aligned}
$$

using the formula, $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r},|r|<1$, we obtain

$$
E_{x}=\frac{1}{1-1 / 4}=\frac{4}{3}
$$

Example 4.6

find the energy of $x[n]$ and the power of the periodic signal $y[n]$ shown below

Solution:

$$
E_{x}=\sum_{n=0}^{5} n^{2}=55
$$

the period of signal y is $N_{0}=6$, hence

$$
P_{y}=\frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1}|y[n]|^{2}=\frac{1}{6} \sum_{n=0}^{5} n^{2}=\frac{55}{6}
$$

Example 4.7

find the energy E_{x} and power P_{x} of the signal $x[n]=3 \cos (\pi n / 4)$
Solution: notice that $x[n]$ is 8 -periodic and, therefore, a power signal:

$$
\begin{aligned}
P_{x}=\frac{1}{8} \sum_{n=0}^{7}|x[n]|^{2} & =\frac{1}{8}\left[2(3)^{2}+4(3 / \sqrt{(2})^{2}\right] \\
& =\frac{1}{8}[18+18]=\frac{9}{2}=4.5
\end{aligned}
$$

since $0<P_{x}<\infty$, we know that $E_{x}=\infty$
we can verify this power calculation in Matlab:
$\mathrm{x}=@(\mathrm{n}) 3 * \cos (\mathrm{pi} * \mathrm{n} / 4) ; \mathrm{n}=0: 7$;
$P x=\operatorname{sum}\left((x(n)) .{ }^{\wedge} 2\right) / 8$
[output is $\mathrm{Px}=4.5000$]

Exercises

- show that the signal $x[n]=a^{n} u[n]$ is
- an energy signal with energy $E_{x}=1 /\left(1-|a|^{2}\right)$ if $|a|<1$
- a power signal with power $P_{x}=1 / 2$ if $|a|=1$
- neither an energy signal nor a power signal if $|a|>1$
- show that the power of a signal $D e^{j\left(2 \pi / N_{0}\right) n}$ is $|D|^{2}$

Outline

- DT signals
- signal operations
- useful DT signals
- signal energy and power
- aliasing and DT sinusoids

Nonuniqueness of DT sinusoids

- observe that $\cos (\Omega n)=\cos [(\Omega+2 \pi m) n]$ for integer m
- therefore, two DT sinusoids with frequencies Ω and $\Omega+2 \pi m$ are identical

Example:

$x_{2}[n]=\cos \left(\frac{12 \pi n}{5}\right)=\cos \left(\frac{2 \pi n}{5}+2 \pi n\right)=x_{1}[n]$

Fundamental band of DT sinusoids

- because $e^{j 2 \pi m}=1$ for all integer values of m, we have $e^{j \Omega n}=e^{j(\Omega \pm 2 \pi m) n}$ for any integer m
- the DT exponenetial $e^{j \Omega n}$ (or sinusoid) has a unique waveform only in a range separated by 2π

Fundamental band

- the values of Ω in the range $-\pi$ to π is called the fundamental band
- every frequency Ω, no matter how large, is identical to some frequency, Ω_{a}, in the fundamental band $\left(-\pi \leq \Omega_{a}<\pi\right)$, where

$$
\Omega_{a}=\Omega-2 \pi m \quad-\pi \leq \Omega_{a}<\pi \quad \text { and } \quad m \text { integer }
$$

Apparent frequency

the fundamental or apparent frequency for a discrete-time sinusoid with frequency Ω is equal to $\left|\Omega_{a}\right|$ (the value in the range 0 to π that gives an equivalent siunsoid)

- example: $\cos (8.7 \pi n+\theta)=\cos (0.7 \pi n+\theta)$, so apparent frequency is $\left|\Omega_{a}\right|=0.7 \pi$
- since $\cos (-\Omega n+\theta)=\cos (\Omega n-\theta)$, a frequency in the range $-\pi$ to 0 is identical to the frequency (of the same magnitude) in the range 0 to π (but with a change in phase sign)
- example: $\cos (9.6 \pi n+\theta)=\cos (-0.4 \pi n+\theta)=\cos (0.4 \pi n-\theta)$, so the apparent frequency is $\left|\Omega_{a}\right|=0.4 \pi$
the plot below shows the fundamental band frequency Ω_{a} versus the frequency Ω of a sinusoid; the frequency Ω_{a} is modulo 2π value of Ω

(a)

(b)

Example 4.8

express the following signals in terms of their apparent frequencies:
(a) $\cos (0.5 \pi n+\theta)$
(b) $\cos (1.6 \pi n+\theta)$
(c) $\sin (1.6 \pi n+\theta)$
(d) $\cos (2.3 \pi n+\theta)$
(e) $\cos (34.699 n+\theta)$

Solution:

(a) $\Omega=0.5 \pi$ is in the reduced range already; because $\Omega_{a}=0.5 \pi$, there is no phase reversal, and the apparent sinusoid is $\cos (0.5 \pi n+\theta)$
(b) $1.6 \pi=-0.4 \pi+2 \pi$ so that $\Omega_{a}=-0.4 \pi$ and $\left|\Omega_{a}\right|=0.4$; also, Ω_{a} is negative, implying sign change for the phase; hence, the apparent sinusoid is $\cos (0.4 \pi n-\theta)$
(c) we first convert the sine to cosine $\sin (1.6 \pi n+\theta)=\cos (1.6 \pi n-(\pi / 2)+\theta)$; in part (b), we found $\Omega_{a}=-0.4 \pi$; hence, the apparent sinusoid is $\cos (0.4 \pi n+(\pi / 2)-\theta)=-\sin (0.4 \pi n-\theta)$; in this case, both the phase and the amplitude change signs
(d) $2.3 \pi=0.3 \pi+2 \pi$ so that $\Omega_{a}=0.3 \pi$; hence, the apparent sinusoid is $\cos (0.3 \pi n+\theta)$
(e) we have $34.699=-3+6(2 \pi)$; hence, $\Omega_{a}=-3$, and the apparent frequency $\left|\Omega_{a}\right|=3 \mathrm{rad} /$ sample; because Ω_{a} is negative, there is a sign change of the phase and the apparent sinusoid is $\cos (3 n-\theta)$

Aliasing and sampling rate

- a continuous-time sinusoid $\cos \omega t$ sampled every T seconds $(t=n T)$ results in a discrete-time sinusoid $\cos \omega n T$, which is $\cos \Omega n$ with $\Omega=\omega T$
- the discrete-time sinusoids $\cos \Omega n$ have unique waveforms only for the values of frequencies in the range $\Omega<\pi$ or $\omega T<\pi$
- therefore, samples of continuous-time sinusoids of two (or more) different frequencies can generate the same discrete-time signal
- this phenomenon is known as aliasing because through sampling, two entirely different analog sinusoids take on the same "discrete-time" identity

Example: samples of two sinusoids $\cos 12 \pi t$ and $\cos 2 \pi t$ taken every 0.2 second

- the corresponding discrete-time frequencies $(\Omega=\omega T=0.2 \omega)$ are $\cos 2.4 \pi$ and $\cos 0.4 \pi$
- the apparent frequency of 2.4π is 0.4π, identical to the discrete-time frequency corresponding to the lower sinusoid

- aliasing causes ambiguity in digital signal processing, which makes it impossible to determine the true frequency of the sampled signal
- for instance, digitally processing a continuous-time signal that contains two distinct components of frequencies ω_{1} and $\omega_{2}>\omega_{1}$; if $\omega_{2}-\omega_{1}=2 k \pi / T$), the the sampled frequencies $\Omega_{1}=\omega_{1} T$ and $\Omega_{2}=\omega_{2} T$ will be read as the same (lower of the two) frequency by the digital processor; as a result, the higher-frequency component ω_{2} not only is lost for good, but also it reincarnates as a component of frequency ω_{1}, thus distorting the true amplitude of the original component of frequency ω_{1}

Avoiding aliasing

- to avoid aliasing, the frequencies of the continuous-time sinusoids to be processed should be kept within the fundamental band $\omega T \leq \pi$ or $\omega \leq \pi / T$
- this is because any continuous-time sinusoid of frequency in this range has a unique waveform when it is sampled
if $\omega_{h}=2 \pi f_{h}$ is the highest frequency to be processed, then, to avoid aliasing,

$$
f_{h}<\frac{1}{2 T} \quad \text { or } \quad T<\frac{1}{2 f_{h}}
$$

since the sampling frequency f_{s} is the reciprocal of the sampling interval T, we can also express

$$
f_{s}=\frac{1}{T}>2 f_{h} \quad \text { or } \quad f_{h}<\frac{f_{s}}{2}
$$

this result is a special case of the well-known sampling theorem; It states that for a discrete-time system to process a continuous-time sinusoid, the sampling rate must be greater than twice the frequency (in hertz) of the sinusoid

Example 4.9

(a) Determine the maximum sampling interval T that can be used in a discrete-time oscillator that generates a sinusoid of 50 kHz

Solution: $T<1 /\left(2 f_{h}\right)=10 \mu \mathrm{~s}$; the sampling frequency is $f_{s}=1 / T>100$ kHz
(b) a discrete-time amplifier uses a sampling interval $T=25^{\circ} \mu \mathrm{s}$; what is the highest frequency of a signal that can be processed with this amplifier without aliasing?

Solution: $f_{h}<1 / 2 T=20 \mathrm{kHz}$

Exercise

state with reasons whether the following sinusoids are periodic; if periodic, find the fundamental period N_{0}, and determine whether the fundamental frequency is equal to the sinusoid's frequency
(a) $\cos (3 \pi n / 7)$
(b) $\cos (10 n / 7)$
(c) $\cos (\sqrt{\pi} n)$
(d) $\sin (2.35 \pi n+1)$

References

- B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 3 (3.1-3.3)
- M. J. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB, McGraw Hill, chapter 3

