
10. Analysis using 𝑧-transform

• solution of linear difference equations

• transfer function and zero-state response

• frequency response

• aliasing and digital signal processing
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10.1



Solving linear difference equations

■ the 𝑧-transform converts difference equations into algebraic equations that
are readily solved to find the solution in the 𝑧-domain

■ taking the inverse 𝑧-transform of the 𝑧-domain solution yields the desired
time-domain solution

Example:

𝑦[𝑛 + 2] − 5𝑦[𝑛 + 1] + 6𝑦[𝑛] = 3𝑥 [𝑛 + 1] + 5𝑥 [𝑛]

(initial conditions 𝑦[−1] = 11/6, 𝑦[−2] = 37/36, and input 𝑥 [𝑛] = (2)−𝑛𝑢[𝑛])

■ using left-shift property requires a knowledge of auxiliary conditions
𝑦[0], 𝑦[1], . . . , 𝑦[𝑁 − 1], which are typically not given

■ to directly utilize the knowledge of initial conditions, it is more convenient to
express the difference equation in delay form and use the right-shift property
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the delay-form difference equation is

𝑦[𝑛] − 5𝑦[𝑛 − 1] + 6𝑦[𝑛 − 2] = 3𝑥 [𝑛 − 1] + 5𝑥 [𝑛 − 2]

here, 𝑦[𝑛 − 𝑚] (or 𝑥 [𝑛 − 𝑚]) means 𝑦[𝑛 − 𝑚]𝑢[𝑛] (or 𝑥 [𝑛 − 𝑚]𝑢[𝑛] ); we have

𝑦[𝑛]𝑢[𝑛] ⇐⇒ 𝑌 (𝑧)

𝑦[𝑛 − 1]𝑢[𝑛] ⇐⇒ 1

𝑧
𝑌 (𝑧) + 𝑦[−1] = 1

𝑧
𝑌 (𝑧) + 11

6

𝑦[𝑛 − 2]𝑢[𝑛] ⇐⇒ 1

𝑧2
𝑌 (𝑧) + 1

𝑧
𝑦[−1] + 𝑦[−2] = 1

𝑧2
𝑌 (𝑧) + 11

6𝑧
+ 37

36

noting that for causal input 𝑥 [𝑛], 𝑥 [−1] = 𝑥 [−2] = · · · = 𝑥 [−𝑛] = 0, hence
𝑥 [𝑛 − 𝑚]𝑢[𝑛] ⇐⇒ 1

𝑧𝑚
𝑋 (𝑧), we thus have

𝑥 [𝑛] = (2)−𝑛𝑢[𝑛] = (0.5)𝑛𝑢[𝑛] ⇐⇒ 𝑧

𝑧 − 0.5

𝑥 [𝑛 − 1]𝑢[𝑛] ⇐⇒ 1

𝑧
𝑋 (𝑧) = 1

𝑧

𝑧

𝑧 − 0.5
=

1

𝑧 − 0.5

𝑥 [𝑛 − 2]𝑢[𝑛] ⇐⇒ 1

𝑧2
𝑋 (𝑧) = 1

𝑧2
𝑋 (𝑧) = 1

𝑧(𝑧 − 0.5)

solution of linear difference equations 10.3



taking the 𝑧-transform of the difference equation:

𝑌 (𝑧) − 5

[
1

𝑧
𝑌 (𝑧) + 11

6

]
+ 6

[
1

𝑧2
𝑌 (𝑧) + 11

6𝑧
+ 37

36

]
=

3

𝑧 − 0.5
+ 5

𝑧(𝑧 − 0.5)(
1 − 5

𝑧
+ 6

𝑧2

)
𝑌 (𝑧) −

(
3 − 11

𝑧

)
=

3

𝑧 − 0.5
+ 5

𝑧(𝑧 − 0.5)

rearranging gives,

𝑌 (𝑧)
𝑧

=
3𝑧2 − 9.5𝑧 + 10.5

(𝑧 − 0.5) (𝑧 − 2) (𝑧 − 3) =
(26/15)
𝑧 − 0.5

− (7/3)
𝑧 − 2

+ (18/5)
𝑧 − 3

therefore,

𝑌 (𝑧) = 26
15

(
𝑧

𝑧 − 0.5

)
− 7

3

(
𝑧

𝑧 − 2

)
+ 18

5

(
𝑧

𝑧 − 3

)
and

𝑦[𝑛] =
[
26
15 (0.5)

𝑛 − 7
3 (2)

𝑛 + 18
5 (3)𝑛

]
𝑢[𝑛]
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Zero-input and zero-state components

■ we can separate the solution into zero-input and zero-state components

■ to do so, we separate the response into terms arising from the input and
terms arising from initial conditions (IC)

in the previous example, we have(
1 − 5

𝑧
+ 6

𝑧2

)
𝑌 (𝑧) =

(
3 − 11

𝑧

)
︸     ︷︷     ︸

IC terms

+ (3𝑧 + 5)
𝑧(𝑧 − 0.5)︸       ︷︷       ︸
input terms

multiplying both sides by 𝑧2 yields(
𝑧2 − 5𝑧 + 6

)
𝑌 (𝑧) = 𝑧(3𝑧 − 11)︸      ︷︷      ︸

IC terms

+ 𝑧(3𝑧 + 5)
𝑧 − 0.5︸     ︷︷     ︸

input terms

solution of linear difference equations 10.5



hence,

𝑌 (𝑧) = 𝑧(3𝑧 − 11)
𝑧2 − 5𝑧 + 6︸        ︷︷        ︸

zero-input response

+ 𝑧(3𝑧 + 5)
(𝑧 − 0.5) (𝑧2 − 5𝑧 + 6)︸                        ︷︷                        ︸

zero-state response

we expand both terms on the right-hand side into modified partial fractions:

𝑌 (𝑧) =
[
5

(
𝑧

𝑧 − 2

)
− 2

(
𝑧

𝑧 − 3

)]
︸                         ︷︷                         ︸

zero-input response

+
[
26

15

(
𝑧

𝑧 − 0.5

)
− 22

3

(
𝑧

𝑧 − 2

)
+ 28

5

(
𝑧

𝑧 − 3

)]
︸                                                     ︷︷                                                     ︸

zero-state response

thus

𝑦[𝑛] = (5(2)𝑛 − 2(3)𝑛) 𝑢[𝑛]︸                     ︷︷                     ︸
zero-input response

+
(
26

15
(0.5)𝑛 − 22

3
(2)𝑛 + 28

5
(3)𝑛

)
𝑢[𝑛]︸                                           ︷︷                                           ︸

zero-state response

=

[
−7

3
(2)𝑛 + 18

5
(3)𝑛 + 26

15
(0.5)𝑛

]
𝑢[𝑛]
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Exercises

■ solve the following equation if the initial conditions 𝑦[−1] = 2, 𝑦[−2] = 0, and
the input 𝑥 [𝑛] = 𝑢[𝑛]:

𝑦[𝑛 + 2] − 5
6 𝑦[𝑛 + 1] + 1

6 𝑦[𝑛] = 5𝑥 [𝑛 + 1] − 𝑥 [𝑛]

separate the response into zero-input and zero-state responses
Answer:

𝑦[𝑛] =
(
3
(
1
2

)𝑛
− 4

3

(
1
3

)𝑛)
𝑢[𝑛]︸                          ︷︷                          ︸

zero-input response

+
(
12 − 18

(
1
2

)𝑛
+ 6

(
1
3

)𝑛)
𝑢[𝑛]︸                                  ︷︷                                  ︸

zero-state response

=

[
12 − 15

(
1
2

)𝑛
+ 14

3

(
1
3

)𝑛]
𝑢[𝑛]

■ solve the following equation if the auxiliary conditions are 𝑦[0] = 1, 𝑦[1] = 2,
and the input 𝑥 [𝑛] = 𝑢[𝑛]:

𝑦[𝑛] + 3𝑦[𝑛 − 1] + 2𝑦[𝑛 − 2] = 𝑥 [𝑛 − 1] + 3𝑥 [𝑛 − 2]

Answer: 𝑦[𝑛] =
[
2
3 + 2(−1)𝑛 − 5

3 (−2)
𝑛
]
𝑢[𝑛]
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The transfer function

the transfer function of an LTID system with impulse response ℎ[𝑛] is

𝐻 (𝑧) =
∞∑︁

𝑛=−∞
ℎ[𝑛]𝑧−𝑛

■ 𝐻 (𝑧) is 𝑧-transform of impulse response ℎ[𝑛]
■ the LTID system response 𝑦[𝑛] to an everlasting exponential 𝑧𝑛 is

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑧𝑛 =

∞∑︁
𝑚=−∞

ℎ[𝑚]𝑧𝑛−𝑚 = 𝐻 (𝑧)𝑧𝑛

for fixed 𝑧, the output 𝑦[𝑛] = 𝐻 (𝑧)𝑧𝑛 has same form as input 𝑧𝑛; this input is
called eigenfunction

■ an alternate definition of the transfer function 𝐻 (𝑧) of an LTID system is

𝐻 (𝑧) = output signal

input signal

����
input=exponential 𝑧𝑛
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Zero-state response

taking 𝑧-transform of 𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛], we have

𝑌 (𝑧) = 𝑋 (𝑧)𝐻 (𝑧)

■ we can find zero state response by taking the inverse 𝑧-transform:

𝑦[𝑛] = Z−1{𝑋 (𝑧)𝐻 (𝑧)}

■ given the input and output, we can find transfer function as

𝐻 (𝑧) = 𝑌 (𝑧)
𝑋 (𝑧) =

Z [zero-state response]
Z [input]
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Block diagrams

Block diagram of linear system

𝑋[𝑧 ] 𝑌 [𝑧 ]𝐻 [𝑧 ]

Cascade interconnection

𝑋[𝑧 ] 𝑋[𝑧 ] 𝑌 [𝑧 ]𝑌 [𝑧 ]
𝐻1 [𝑧 ] 𝐻2 [𝑧 ] 𝐻1 [𝑧 ]𝐻2 [𝑧 ]

𝑊 [𝑧 ]

Parallel interconnection

𝑋[𝑧 ] 𝑋[𝑧 ] 𝑌 [𝑧 ]𝑌 [𝑧 ]

𝐻1 [𝑧 ]

𝐻2 [𝑧 ]

𝐻1 [𝑧 ] + 𝐻2 [𝑧 ]
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Feedback interconnection

𝑋[𝑧 ] 𝑋[𝑧 ]𝑌 [𝑧 ] 𝑌 [𝑧 ]

𝐻 [𝑧 ]

𝐺 [𝑧 ]
𝐸 [𝑧 ] 𝐺 [𝑧 ]

1 +𝐺 [𝑧 ]𝐻 [𝑧 ]

𝑌 (𝑧)
𝑋 (𝑧) =

𝐺 (𝑧)
1 + 𝐺 (𝑧)𝐻 (𝑧)

Unit delay: the unit delay, which is represented by a box marked 𝐷, will be
represented by its transfer function 1/𝑧
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Transfer function of LTI difference system

𝑁th-order LTID system

𝑄 [𝐸]𝑦[𝑛] = 𝑃[𝐸]𝑥 [𝑛]

or (
𝐸𝑁 + 𝑎1𝐸

𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁

)
𝑦[𝑛]

=

(
𝑏0𝐸

𝑁 + 𝑏1𝐸
𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁

)
𝑥 [𝑛]

the transfer function is

𝐻 (𝑧) = 𝑃(𝑧)
𝑄(𝑧) =

𝑏0𝑧
𝑁 + 𝑏1𝑧

𝑁−1 + · · · + 𝑏𝑁−1𝑧 + 𝑏𝑁

𝑧𝑁 + 𝑎1𝑧
𝑁−1 + · · · + 𝑎𝑁−1𝑧 + 𝑎𝑁
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Example 10.1

consider an LTID system described by the difference equation

𝑦[𝑛 + 2] + 𝑦[𝑛 + 1] + 0.16𝑦[𝑛] = 𝑥 [𝑛 + 1] + 0.32𝑥 [𝑛]

or (
𝐸2 + 𝐸 + 0.16

)
𝑦[𝑛] = (𝐸 + 0.32)𝑥 [𝑛]

find the transfer function and the zero-state response 𝑦[𝑛] due to input
𝑥 [𝑛] = (−2)−𝑛𝑢[𝑛]

Solution: from the difference equation, we find

𝐻 (𝑧) = 𝑃(𝑧)
𝑄(𝑧) =

𝑧 + 0.32

𝑧2 + 𝑧 + 0.16

the input 𝑥 [𝑛] = (−2)−𝑛𝑢[𝑛] = (−0.5)𝑛𝑢[𝑛] 𝑧-transform is

𝑋 (𝑧) = 𝑧

𝑧 + 0.5
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therefore,

𝑌 (𝑧) = 𝑋 (𝑧)𝐻 (𝑧) = 𝑧(𝑧 + 0.32)
(𝑧2 + 𝑧 + 0.16) (𝑧 + 0.5)

and

𝑌 (𝑧)
𝑧

=
(𝑧 + 0.32)

(𝑧2 + 𝑧 + 0.16) (𝑧 + 0.5) =
(𝑧 + 0.32)

(𝑧 + 0.2) (𝑧 + 0.8) (𝑧 + 0.5)

=
2/3

𝑧 + 0.2
− 8/3

𝑧 + 0.8
+ 2

𝑧 + 0.5

so that

𝑌 (𝑧) = 2

3

(
𝑧

𝑧 + 0.2

)
− 8

3

(
𝑧

𝑧 + 0.8

)
+ 2

(
𝑧

𝑧 + 0.5

)
and

𝑦[𝑛] =
[
2

3
(−0.2)𝑛 − 8

3
(−0.8)𝑛 + 2(−0.5)𝑛

]
𝑢[𝑛]
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Example 10.2

if the input to the unit delay is 𝑥 [𝑛]𝑢[𝑛], then its output is given by

𝑦[𝑛] = 𝑥 [𝑛 − 1]𝑢[𝑛 − 1]

show that the transfer function of a unit delay is 1/𝑧

Solution: the 𝑧-transform of this equation yields

𝑌 (𝑧) = 1

𝑧
𝑋 (𝑧) = 𝐻 (𝑧)𝑋 (𝑧)

it follows that the transfer function of the unit delay is

𝐻 (𝑧) = 1

𝑧

transfer function and zero-state response 10.15



Stability

BIBO stability

■ if all the poles of 𝐻 (𝑧) are within the unit circle, then system is BIBO-stable
(all the terms in ℎ[𝑛] are decaying exponentials and ℎ[𝑛] is absolutely
summable)

■ otherwise the system is BIBO-unstable

Internal stability: if 𝑃(𝑧) and 𝑄(𝑧) do not share common factors, then the poles
of 𝐻 (𝑧) are the characteristic roots of the system; hence an LTID system is

1. asymptotically stable if and only if all the poles of its transfer function 𝐻 (𝑧) are
within the unit circle; the poles may be repeated or simple

2. unstable if and only if either one or both of the following conditions exist: (i) at
least one pole of 𝐻 (𝑧) is outside the unit circle; (ii) there are repeated poles of
𝐻 (𝑧) on the unit circle

3. marginally stable if and only if there are no poles of 𝐻 (𝑧) outside the unit
circle, and there are some simple poles on the unit circle
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Inverse systems

if 𝐻 (𝑧) is the transfer function of a system S , then S𝑖 , its inverse system, has a
transfer function 𝐻𝑖 (𝑧) given by

𝐻𝑖 (𝑧) =
1

𝐻 (𝑧)
Examples:
■ an accumulator 𝐻 (𝑧) = 𝑧/(𝑧 − 1) and a backward difference system
𝐻𝑖 (𝑧) = (𝑧 − 1)/𝑧 are inverse of each other

■ if

𝐻 (𝑧) = 𝑧 − 0.4

𝑧 − 0.7

its inverse system transfer function is

𝐻𝑖 (𝑧) =
𝑧 − 0.7

𝑧 − 0.4

as required by the property 𝐻 (𝑧)𝐻𝑖 (𝑧) = 1; hence, it follows that

ℎ[𝑛] ∗ ℎ𝑖 [𝑛] = 𝛿[𝑛]
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Exercises

■ show that the transfer function of the digital differentiator (shaded block) is
given by 𝐻 (𝑧) = (𝑧 − 1)/𝑇𝑧

■ a discrete-time system is described by the following transfer function:

𝐻 (𝑧) = 𝑧 − 0.5

(𝑧 + 0.5) (𝑧 − 1)

(a) find the system response to input 𝑥 [𝑛] = 3−(𝑛+1)𝑢[𝑛] and zero initial conditions
(b) write the difference equation relating the output 𝑦[𝑛] to input 𝑥 [𝑛] for this system

Answers:
(a) 𝑦[𝑛] = 1

3

[
1
2 − 0.8(−0.5)𝑛 + 0.3

(
1
3

)𝑛]
𝑢[𝑛]

(b) 𝑦[𝑛 + 2] − 0.5𝑦[𝑛 + 1] − 0.5𝑦[𝑛] = 𝑥 [𝑛 + 1] − 0.5𝑥 [𝑛]
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Exercises

■ find ℎ[𝑛] by taking the inverse 𝑧-transform of 𝐻 (𝑧) for the systems:
(a) 𝑦[𝑛 + 1] − 𝑦[𝑛] = 𝑥 [𝑛]
(b) 𝑦[𝑛] − 5𝑦[𝑛 − 1] + 6𝑦[𝑛 − 2] = 8𝑥 [𝑛 − 1] − 19𝑥 [𝑛 − 2]
(c) 𝑦[𝑛 + 2] − 4𝑦[𝑛 + 1] + 4𝑦[𝑛] = 2𝑥 [𝑛 + 2] − 2𝑥 [𝑛 + 1]
(d) 𝑦[𝑛] = 2𝑥 [𝑛] − 2𝑥 [𝑛 − 1]

■ show that an accumulator whose impulse response is ℎ[𝑛] = 𝑢[𝑛] is
marginally stable but BIBO-unstable

■ find the impulse responses of an accumulator and a first-order backward
difference system; show that the convolution of the two impulse responses
yields 𝛿[𝑛]
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Frequency response

the LTID system response to complex sinusoid 𝑥 [𝑛] = 𝐴𝑥𝑒
𝑗Ω𝑛 is

𝑦[𝑛] =
∞∑︁

𝑚=−∞
ℎ[𝑚]𝐴𝑥 𝑒

𝑗Ω(𝑛−𝑚) = 𝐻 (𝑒 𝑗Ω)𝐴𝑥𝑒
𝑗Ω𝑛

= |𝐻 (𝑒 𝑗Ω) | |𝐴𝑥 |𝑒 𝑗 (Ω𝑛+∠𝐻 (𝑒 𝑗Ω )+∠𝐴𝑥)

■ the system response to complex sinusoid is also complex sinusoid of the
same frequency Ω multiplied by 𝐻 (𝑒 𝑗Ω)

■ 𝐻 (𝑒 𝑗Ω) is called the frequency response of the system, which is the transfer
function 𝐻 (𝑧) =

∑∞
𝑚=−∞ ℎ[𝑚]𝑧−𝑚 evaluated at 𝑧 = 𝑒 𝑗Ω

■ using frequency response, we can find output for any sinusoidal input

Sinusoidal input response: the response to Re(𝑒 𝑗 (Ω𝑛+\ ) ) = cos(Ω𝑛 + \) is

𝑦[𝑛] = |𝐻 (𝑒 𝑗Ω) | cos
(
Ω𝑛 + \ + ∠𝐻 (𝑒 𝑗Ω)

)
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Amplitude response

■ |𝐻 (𝑒 𝑗Ω) | is the amplitude gain of the system called amplitude response or
magnitude response

■ a plot of |𝐻 (𝑒 𝑗Ω) | versus Ω shows the amplitude gain as a function of
frequency Ω

Phase response

■ ∠𝐻 (𝑒 𝑗Ω) is the phase response

■ a plot of ∠𝐻 (𝑒 𝑗Ω) versus Ω shows how the system modifies or changes the
phase of the input sinusoid
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Steady-state response to causal inputs

■ the response of an LTID system to a causal sinusoidal input cos(Ω𝑛)𝑢[𝑛] is
𝑦[𝑛], plus a natural component consisting of the characteristic modes

■ for a stable system, the steady-state response of a system to a causal
sinusoidal input 𝑥 [𝑛] = cos(Ω𝑛)𝑢[𝑛] is

𝑦𝑠𝑠 [𝑛] =
��𝐻 (𝑒 𝑗Ω)

�� cos (Ω𝑛 + ∠𝐻 (𝑒 𝑗Ω)
)

Response to sampled ct sinusoids

■ in practice, the input may be a sampled continuous-time sinusoid cos𝜔𝑡 (or
an exponential 𝑒 𝑗𝜔𝑡

)
■ when a sinusoid cos𝜔𝑡 is sampled with sampling interval 𝑇 , the resulting

signal is a discrete-time sinusoid cos𝜔𝑛𝑇 , obtained by setting 𝑡 = 𝑛𝑇 in
cos𝜔𝑡

■ therefore, all the results developed here apply if we substitute 𝜔𝑇 for Ω:

Ω = 𝜔𝑇
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Example 10.3

for a system described by the equation

𝑦[𝑛 + 1] − 0.8𝑦[𝑛] = 𝑥 [𝑛 + 1]

find the system response to the inputs

(a) 𝑥 [𝑛] = cos( 𝜋6 𝑛 − 0.2)
(b) 𝑥 [𝑛] = 1

(c) a sampled sinusoid cos(1500𝑡) with sampling interval 𝑇 = 0.001
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Solution: the system equation can be expressed as

(𝐸 − 0.8)𝑦[𝑛] = 𝐸𝑥 [𝑛]

therefore, the transfer function of the system is

𝐻 (𝑧) = 𝑧

𝑧 − 0.8
=

1

1 − 0.8𝑧−1

the frequency response is

𝐻 (𝑒 𝑗Ω) = 1

1 − 0.8𝑒− 𝑗Ω
=

1

(1 − 0.8 cosΩ) + 𝑗0.8 sinΩ

therefore,��𝐻 (𝑒 𝑗Ω)
�� = 1√︁

(1 − 0.8 cosΩ)2 + (0.8 sinΩ)2
=

1
√
1.64 − 1.6 cosΩ

and

∠𝐻 (𝑒 𝑗Ω) = − tan−1
[

0.8 sinΩ

1 − 0.8 cosΩ

]
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(a) for 𝑥 [𝑛] = cos[(𝜋/6)𝑛 − 0.2],Ω = 𝜋/6 and��𝐻 (
𝑒 𝑗 𝜋/6) �� = 1√

1.64−1.6 cos 𝜋
6

= 1.983

∠𝐻
(
𝑒 𝑗 𝜋/6) = − tan−1

[
0.8 sin 𝜋

6

1−0.8 cos 𝜋
6

]
= −0.916 rad

therefore,

𝑦[𝑛] = 1.983 cos
( 𝜋
6
𝑛 − 0.2 − 0.916

)
= 1.983 cos

( 𝜋
6
𝑛 − 1.116

)
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(b) since 1𝑛 = (𝑒 𝑗Ω)𝑛 with Ω = 0, the amplitude response is

𝐻
(
𝑒 𝑗0) = 1√︁

1.64 − 1.6 cos(0)
=

1
√
0.04

= 5 = 5∠0

therefore, ��𝐻 (
𝑒 𝑗0) �� = 5 and ∠𝐻

(
𝑒 𝑗0) = 0

and the system response to input 1 is

𝑦[𝑛] = 5 (1𝑛) = 5 for all 𝑛
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(c) a sinusoid cos 1500𝑡 sampled every 𝑇 seconds (𝑡 = 𝑛𝑇) results in a
discrete-time sinusoid

𝑥 [𝑛] = cos 1500𝑛𝑇

for 𝑇 = 0.001, the input is

𝑥 [𝑛] = cos(1.5𝑛)

in this case, Ω = 1.5 and��𝐻 (
𝑒 𝑗1.5

) �� = 1√
1.64−1.6 cos(1.5)

= 0.809

∠𝐻
(
𝑒 𝑗1.5

)
= − tan−1

[
0.8 sin(1.5)

1−0.8 cos(1.5)

]
= −0.702rad

therefore,

𝑦[𝑛] = 0.809 cos(1.5𝑛 − 0.702)
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Frequency response using MATLAB

Omega = linspace(-pi,pi,400); H = @(z) z./(z-0.8);

subplot(1,2,1); plot(Omega,abs(H(exp(1j*Omega))),’k’); axis tight;

xlabel(’\Omega’); ylabel(’|H(e^{j \Omega})|’);

subplot(1,2,2); plot(Omega,angle(H(exp(1j*Omega))*180/pi),’k’);

axis tight;

xlabel(’\Omega’); ylabel(’\angle H(e^{j \Omega}) [deg]’);

-2 0 2

1

2

3

4

|H
[e

j 
]|

-2 0 2

-0.5

0

0.5

 H
[e

j 
] 

[d
e

g
]

frequency response 10.29



Exercises

■ for a system specified by the equation

𝑦[𝑛 + 1] − 0.5𝑦[𝑛] = 𝑥 [𝑛]

find the amplitude and the phase response; find the system response to
sinusoidal input cos[1000𝑡 − (𝜋/3)] sampled every 𝑇 = 0.5 ms
Answer:���𝐻 (𝑒 𝑗Ω)

��� = 1
√
1.25 − cosΩ

∠𝐻 (𝑒 𝑗Ω) = − tan−1
[

sinΩ

cosΩ − 0.5

]
𝑦[𝑛] = 1.639 cos

(
0.5𝑛 − 𝜋

3
− 0.904

)
= 1.639 cos(0.5𝑛 − 1.951)

■ show that for an ideal delay (𝐻 (𝑧) = 1/𝑧), the amplitude response��𝐻 (𝑒 𝑗Ω)
�� = 1, and the phase response ∠𝐻 (𝑒 𝑗Ω) = −Ω; thus, for an ideal

delay, the phase shift of the output sinusoid is proportional to the frequency of
the input sinusoid (linear phase shift)
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Periodic nature of frequency response

the frequency response 𝐻 (𝑒 𝑗Ω) is a periodic function of Ω with period 2𝜋

𝐻 (𝑒 𝑗Ω) = 𝐻 (𝑒 𝑗 (Ω+2𝜋𝑚) ) 𝑚 integer

■ because 𝑒 𝑗2𝜋𝑚 = 1 for all integer values of 𝑚, we have 𝑒 𝑗Ω𝑛 = 𝑒 𝑗 (Ω±2𝜋𝑚)𝑛

for any integer 𝑚:

■ the DT exponenetial 𝑒 𝑗Ω𝑛 (or sinusoid) has a unique waveform only in a range
separated by 2𝜋
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Nonuniqueness of DT sinusoids

■ observe that cos(Ω𝑛) = cos[(Ω + 2𝜋𝑚)𝑛] for integer 𝑚 [𝑒 𝑗Ω𝑛 = 𝑒 𝑗 (Ω±2𝜋𝑚)𝑛]

■ any two DT sinusoids with frequencies Ω and Ω + 2𝜋𝑚 are identical

Example: 𝑥1 [𝑛] = cos( 2𝜋𝑛5 ), 𝑥2 [𝑛] = cos( 12𝜋𝑛5 ) = cos( 2𝜋𝑛5 + 2𝜋𝑛) = 𝑥1 [𝑛]
𝑥1 [𝑛] = cos

(
2𝜋𝑛
5

)

𝑥2 [𝑛] = cos
(
12𝜋𝑛

5

)
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Fundamental (apparent) frequency

■ DT sinusoid has a unique waveform only in a range separated by 2𝜋

■ the values of Ω in the range −𝜋 to 𝜋 is called the fundamental band

■ every frequency Ω is identical to some frequency, Ω𝑎:

Ω𝑎 = Ω − 2𝜋𝑚 − 𝜋 ≤ Ω𝑎 < 𝜋 and 𝑚 integer

Apparent frequency the fundamental or apparent frequency for a DT sinusoid is
equal to |Ω𝑎 |
■ example: cos(8.7𝜋𝑛 + \) = cos(0.7𝜋𝑛 + \), so |Ω𝑎 | = 0.7𝜋

■ since cos(−Ω𝑛 + \) = cos(Ω𝑛 − \), a frequency in the range −𝜋 to 0 is
identical to the frequency in the range 0 to 𝜋 (with a change in phase sign)

■ example: cos(9.6𝜋𝑛 + \) = cos(−0.4𝜋𝑛 + \) = cos(0.4𝜋𝑛 − \), so
|Ω𝑎 | = 0.4𝜋
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the plot below shows the fundamental band frequency Ω𝑎 versus the frequency
Ω of a sinusoid; the frequency Ω𝑎 is modulo 2𝜋 value of Ω
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Example 10.4

express the following signals in terms of their apparent frequencies:

(a) cos(0.5𝜋𝑛 + \)
(b) cos(1.6𝜋𝑛 + \)
(c) sin(1.6𝜋𝑛 + \)
(d) cos(2.3𝜋𝑛 + \)
(e) cos(34.699𝑛 + \)
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Solution:

(a) Ω = 0.5𝜋 is in the reduced range already; because Ω𝑎 = 0.5𝜋, there is no
phase reversal, and the apparent sinusoid is cos(0.5𝜋𝑛 + \)

(b) 1.6𝜋 = −0.4𝜋 + 2𝜋 so that Ω𝑎 = −0.4𝜋 and |Ω𝑎 | = 0.4; also, Ω𝑎 is negative,
implying sign change for the phase; hence, the apparent sinusoid is
cos(0.4𝜋𝑛 − \)

(c) we first convert the sine to cosine sin(1.6𝜋𝑛 + \) = cos(1.6𝜋𝑛− (𝜋/2) + \);
in part (b), we found Ω𝑎 = −0.4𝜋; hence, the apparent sinusoid is
cos(0.4𝜋𝑛+ (𝜋/2) − \) = − sin(0.4𝜋𝑛 − \); in this case, both the phase and
the amplitude change signs

(d) 2.3𝜋 = 0.3𝜋 + 2𝜋 so that Ω𝑎 = 0.3𝜋; hence, the apparent sinusoid is
cos(0.3𝜋𝑛 + \)

(e) we have 34.699 = −3 + 6(2𝜋); hence, Ω𝑎 = −3, and the apparent frequency
|Ω𝑎 | = 3 rad/sample; because Ω𝑎 is negative, there is a sign change of the
phase and the apparent sinusoid is cos(3𝑛 − \)
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Aliasing and sampling rate

a CT sinusoid cos𝜔𝑡 sampled every 𝑇 seconds (𝑡 = 𝑛𝑇) results in a DT sinusoid

cosΩ𝑛 where Ω = 𝜔𝑇

■ since DT sinusoids cosΩ𝑛 have unique waveforms only for the values of
frequencies in the range Ω < 𝜋 (𝜔𝑇 < 𝜋), samples of continuous-time
sinusoids of two (or more) different frequencies can generate the same
discrete-time signal

■ this phenomenon is known as aliasing because through sampling, two
entirely different analog sinusoids take on the same “discrete-time” identity

Example: two sinusoids cos 12𝜋𝑡 and cos 2𝜋𝑡 sampled every 0.2 second

■ the sampled DT sinusoids (Ω = 𝜔𝑇 = 0.2𝜔) are cos 2.4𝜋𝑛 and cos 0.4𝜋𝑛

■ the apparent frequency of 2.4𝜋 is 0.4𝜋, identical to the discrete-time
frequency corresponding to the lower sinusoid
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aliasing causes ambiguity in digital signal processing, which makes it impossible
to determine the true frequency of the sampled signal
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Avoiding aliasing (sampling theorem)

to avoid aliasing, the frequencies of the continuous-time sinusoids to be sampled
must be kept within the fundamental band 𝜔𝑇 ≤ 𝜋

Sampling theorem: if 𝜔ℎ = 2𝜋 𝑓ℎ is the highest frequency to be processed,
then, to avoid aliasing,

𝑇 <
1

2 𝑓ℎ

since the sampling freq. 𝑓𝑠 is the reciprocal of the sampling interval 𝑇 , we have

𝑓𝑠 =
1

𝑇
> 2 𝑓ℎ

(this result is a special case of the well-known sampling theorem)
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Example 10.5

(a) determine the maximum sampling interval 𝑇 that can be used in a
discrete-time oscillator that generates a sinusoid of 50 kHz

Solution: 𝑇 < 1/(2 𝑓ℎ) = 10 `s; the sampling frequency is 𝑓𝑠 = 1/𝑇 > 100
kHz

(b) a discrete-time amplifier uses a sampling interval 𝑇 = 25 `s; what is the
highest frequency of a signal that can be processed with this amplifier without
aliasing?

Solution: 𝑓ℎ < 1/2𝑇 = 20 kHz
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Reference:

■ B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 5.3–5.5.

Further reading and practice exercises:

■ Read section(s) 5.3–5.5 in the book.
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