6. Time-domain analysis of discrete-time systems

- zero-input response
- unit-impulse response
- zero-state response and convolution
- system stability

Difference equation

Advance-form

$$
\begin{aligned}
& y[n+N]+a_{1} y[n+N-1]+\cdots+a_{N-1} y[n+1]+a_{N} y[n] \\
& =b_{0} x[n+M]+b_{1} x[n+M-1]+\cdots+b_{M} x[n]
\end{aligned}
$$

- time-invariant if coefficients a_{i}, b_{i} are constants (independent of n)
- causal if $M \leq N$

Causal delay-form: let $M=N$ and replace all n by $n-N$:

$$
\begin{aligned}
& y[n]+a_{1} y[n-1]+\cdots+a_{N-1} y[n-N+1]+a_{N} y[n-N] \\
& =b_{0} x[n]+b_{1} x[n-1]+\cdots+b_{N-1} x[n-N+1]+b_{N} x[n-N]
\end{aligned}
$$

- delay form is more natural form since delay operation is realizable
- advance form is more mathematically convenience compared to delay form

LTI difference system

Operator notation: for discrete-time systems, the notation E is used to denote the operation for advancing a sequence by one time unit

- $E x[n] \triangleq x[n+1]$
- $E^{k} x[n] \triangleq x[n+k]$

LTID (difference) system: the advance-form difference equation with $M=N$ can be expressed as

$$
\begin{equation*}
Q[E] y[n]=P[E] x[n] \tag{6.1}
\end{equation*}
$$

where $Q[E]$ and $P[E]$ are N th-order polynomial operators

$$
\begin{aligned}
& Q[E]=E^{N}+a_{1} E^{N-1}+\cdots+a_{N-1} E+a_{N} \\
& P[E]=b_{0} E^{N}+b_{1} E^{N-1}+\cdots+b_{N-1} E+b_{N}
\end{aligned}
$$

Zero-input response

the zero-input response $y_{0}[n]$ is the solution of (6.1) with $x[n]=0$:

$$
\begin{equation*}
\underbrace{\left(E^{N}+a_{1} E^{N-1}+\cdots+a_{N-1} E+a_{N}\right)}_{Q[E]} y_{0}[n]=0 \tag{6.2}
\end{equation*}
$$

- a linear combination of $y_{0}[n]$ and advanced $y_{0}[n]$ is zero for all n
- possible if and only if $y_{0}[n]$ and advanced $y_{0}[n]$ share the same form; only an exponential function γ^{n} has this property $\left(E^{k}\left\{\gamma^{n}\right\}=\gamma^{k} \gamma^{n}\right)$
- let $y_{0}[n]=c \gamma^{n}$, then using $E^{k} y_{0}[n]=c \gamma^{n+k}$ in (6.2), we obtain

$$
c\left(\gamma^{N}+a_{1} \gamma^{N-1}+\cdots+a_{N-1} \gamma+a_{N}\right) \gamma^{n}=c Q[\gamma]=0
$$

hence, $c \gamma^{n}$ satisfies the zero-input difference equatio (6.2) if $Q[\gamma]=0$

Characteristic equation

$$
Q[\gamma]=\gamma^{N}+a_{1} \gamma^{N-1}+\cdots+a_{N-1} \gamma+a_{N}=0
$$

- $Q[\gamma]$ is the characteristic polynomial
- $Q[\gamma]=0$ has N solutions $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}$ called characteristic roots of the system or characteristic values (also eigenvalues) of the system
- all $c_{1} \gamma_{1}^{n}, c_{2} \gamma_{2}^{n}, \ldots, c_{N} \gamma_{N}^{n}$ satisfy the zero-input difference equation
- the general form of the zero-input response depends on whether the roots are distinct or repeated

Zero-input response

Distinct roots: for distinct roots, $\gamma_{1}, \ldots, \gamma_{N}$, the zero input solution is

$$
y_{0}[n]=c_{1} \gamma_{1}^{n}+c_{2} \gamma_{2}^{n}+\cdots+c_{N} \gamma_{N}^{n}
$$

- $\gamma_{1}, \ldots, \gamma_{N}$ are the characteristic modes or natural modes of the system
- $c_{1}, c_{2}, \ldots, c_{N}$ are constants determined from N auxiliary conditions (e.g., initial conditions)

Repeated roots: if the characteristic polynomial has a repeated root:

$$
Q[\gamma]=\left(\gamma-\gamma_{1}\right)^{r}\left(\gamma-\gamma_{r+1}\right)\left(\gamma-\gamma_{r+2}\right) \cdots\left(\gamma-\gamma_{N}\right)
$$

then the zero-input response of the system is

$$
y_{0}[n]=\left(c_{1}+c_{2} n+\cdots+c_{r} n^{r-1}\right) \gamma_{1}^{n}+\sum_{i=r+1}^{N} c_{i} \gamma_{i}^{n}
$$

- root γ_{1} repeats r times (root of multiplicity r)
- the characteristic modes for γ_{1} are $\gamma_{1}^{n}, n \gamma_{1}^{n}, n^{2} \gamma_{1}^{n}, \ldots, n^{r-1} \gamma_{1}^{n}$

Example 6.1

determine the zero-input response $y_{0}[n]$ of

$$
y[n+2]-0.6 y[n+1]-0.16 y[n]=5 x[n+2]
$$

with input $x[n]=4^{-n} u[n]$ and initial conditions $y[-1]=0$ and $y[-2]=25 / 4$

Solution: the system of equation in operator notation is

$$
\left(E^{2}-0.6 E-0.16\right) y[n]=5 E^{2} x[n]
$$

the characteristic polynomial is

$$
Q[\gamma]=\gamma^{2}-0.6 \gamma-0.16=(\gamma+0.2)(\gamma-0.8)
$$

the characteristic equation is

$$
(\gamma+0.2)(\gamma-0.8)=0
$$

the characteristic roots are $\gamma_{1}=-0.2$ and $\gamma_{2}=0.8$
the zero-input response is

$$
y_{0}[n]=c_{1}(-0.2)^{n}+c_{2}(0.8)^{n}
$$

to find the constants c_{1} and c_{2}, we set $n=-1$ and -2 in the previous equation and use $y_{0}[-1]=0$ and $y_{0}[-2]=25 / 4$ to obtain:

$$
\begin{aligned}
0 & =-5 c_{1}+\frac{5}{4} c_{2} \\
\frac{25}{4} & =25 c_{1}+\frac{25}{16} c_{2}
\end{aligned}
$$

solving gives $c_{1}=\frac{1}{5}$ and $c_{2}=\frac{4}{5}$; therefore

$$
y_{0}[n]=\frac{1}{5}(-0.2)^{n}+\frac{4}{5}(0.8)^{n}, \quad n \geq 0
$$

Example 6.2

$$
\left(E^{2}+6 E+9\right) y[n]=\left(2 E^{2}+6 E\right) x[n]
$$

determine the zero-input response $y_{0}[n]$ if $y_{0}[-1]=-1 / 3$ and $y_{0}[-2]=-2 / 9$
Solution: the characteristic polynomial is $\gamma^{2}+6 \gamma+9=(\gamma+3)^{2}$, and we have a repeated characteristic root at $\gamma=-3$; the characteristic modes are $(-3)^{n}$ and $n(-3)^{n}$; hence, the zero-input response is

$$
y_{0}[n]=\left(c_{1}+c_{2} n\right)(-3)^{n}
$$

we can determine the constants c_{1} and c_{2} from the initial conditions, doing so we get $c_{1}=4$ and $c_{2}=3$; hence

$$
y_{0}[n]=(4+3 n)(-3)^{n} \quad n \geq 0
$$

Complex roots

for difference equation with real coefficients, complex roots appear as conjugates pairs:

$$
\gamma=|\gamma| e^{j \beta} \quad \text { and } \quad \gamma^{*}=|\gamma| e^{-j \beta}
$$

complex form: the zero-input response is

$$
y_{0}[n]=c_{1} \gamma^{n}+c_{2}\left(\gamma^{*}\right)^{n}=c_{1}|\gamma|^{n} e^{j \beta n}+c_{2}|\gamma|^{n} e^{-j \beta n}
$$

real-form: let $c_{1}=\frac{c}{2} e^{j \theta}$ and $c_{2}=\frac{c}{2} e^{-j \theta}$, then we can write output as

$$
y_{0}[n]=c|\gamma|^{n} \cos (\beta n+\theta)
$$

where c and θ are constants determined from the auxiliary conditions

Example 6.3

$$
\left(E^{2}-1.56 E+0.81\right) y[n]=(E+3) x[n]
$$

determine the zero-input response $y_{0}[n]$ if $y_{0}[-1]=2$ and $y_{0}[-2]=1$
Solution: the characteristic equation is $\left(\gamma^{2}-1.56 \gamma+0.81\right)=0$ and the characteristic roots are $0.78 \pm j 0.45=0.9 e^{ \pm j(\pi / 6)}$; so the complex form solution:

$$
y_{0}[n]=c(0.9)^{n} e^{j \pi n / 6}+c^{*}(0.9)^{n} e^{-j \pi n / 6}
$$

using the initial conditions $y_{0}[-1]=2$ and $y_{0}[-2]=1$, we find

$$
\left.\begin{array}{rl}
c & =1.1550-j 0.2025
\end{array}=1.1726 e^{-j 0.1735}\right)
$$

hence

$$
y_{0}[n]=1.1726 e^{-j 0.1735}(0.9)^{n} e^{j \pi n / 6}+1.1726 e^{j 0.1735}(0.9)^{n} e^{-j \pi n / 6}
$$

we can also find $y_{0}[n]$ using the real form of the solution; since $\gamma=0.9 e^{ \pm j(\pi / 6)}$, we have $|\gamma|=0.9$ and $\beta=\pi / 6$, and the real-form zero-input response is

$$
y_{0}[n]=c(0.9)^{n} \cos \left(\frac{\pi}{6} n+\theta\right)
$$

to determine the constants c and θ, we use the initial conditions:

$$
\begin{aligned}
& y_{0}[-1]=\frac{c}{0.9} \cos \left(-\frac{\pi}{6}+\theta\right)=\frac{\sqrt{3}}{1.8} c \cos \theta+\frac{1}{1.8} c \sin \theta=2 \\
& y_{0}[-2]=\frac{c}{(0.9)^{2}} \cos \left(-\frac{\pi}{3}+\theta\right)=\frac{1}{1.62} c \cos \theta+\frac{\sqrt{3}}{1.62} c \sin \theta=1
\end{aligned}
$$

solving gives $c \cos \theta=2.308$ and $c \sin \theta=-0.397$; hence

$$
\tan \theta=\frac{c \sin \theta}{c \cos \theta}=\frac{-0.397}{2.308}=-0.172, \quad \theta=\tan ^{-1}(-0.172)=-0.17 \mathrm{rad}
$$

substituting $\theta=-0.17$ radian in $c \cos \theta=2.308$ yields $c=2.34$ and

$$
y_{0}[n]=2.34(0.9)^{n} \cos \left(\frac{\pi}{6} n-0.17\right) \quad n \geq 0
$$

Finding zero-input response iteratively using MATLAB

use MATLAB to iteratively compute and then plot the zero-input response for $\left(E^{2}-1.56 E+0.81\right) y[n]=(E+3) x[n]$ with $y[-1]=2$ and $y[-2]=1$
$\mathrm{n}=(-2: 20)$ '; $\mathrm{y}=[1 ; 2 ;$ zeros (length(n$)-2,1)] ;$
for $k=1: 1$ ength(n) -2 ,
$\mathrm{y}(\mathrm{k}+2)=1.56 * \mathrm{y}(\mathrm{k}+1)-0.81 * \mathrm{y}(\mathrm{k})$;
end;
clf; stem(n,y,'k'); xlabel('n'); ylabel('y[n]');
axis([-2 $20-1.52 .5])$;

Exercises

find and sketch the zero-input response for the systems described by the following equations:
(a) $y[n+1]-0.8 y[n]=3 x[n+1]$ with initial condition $y[-1]=10$
(b) $y[n+1]+0.8 y[n]=3 x[n+1]$ with initial condition $y[-1]=10$
(c) $y[n]+0.3 y[n-1]-0.1 y[n-2]=x[n]+2 x[n-1]$ with initial conditions $y_{0}[-1]=1$ and $y_{0}[-2]=33$
(d) $y[n]+4 y[n-2]=2 x[n]$ with $y[-1]=-1 /(2 \sqrt{2})$ and $y[-2]=1 /(4 \sqrt{2})$ in each case verify the solutions by computing the first three terms using the iterative method

Answers:
(a) $8(0.8)^{n}$
(b) $-8(-0.8)^{n}$
(c) $y_{0}[n]=(0.2)^{n}+2(-0.5)^{n}$
(d) $y_{0}[n]=(2)^{n} \cos \left(\frac{\pi}{2} n-\frac{3 \pi}{4}\right)$

Outline

- zero-input response
- unit-impulse response
- zero-state response and convolution
- system stability

Impulse response

- the (unit) impulse response $h[n]$ is output of the system when the input is $\delta[n]$ with zero zero initial conditions
- an LTI system is causal if and only if $h[n]=0$ for $n<0$

Linear difference system

$$
\begin{align*}
& \underbrace{\left(E^{N}+a_{1} E^{N-1}+\cdots+a_{N-1} E+a_{N}\right)}_{Q[E]} y[n] \\
& =\underbrace{\left(b_{0} E^{N}+b_{1} E^{N-1}+\cdots+b_{N-1} E+b_{N}\right)}_{P[E]} x[n]
\end{align*}
$$

the impulse response $h[n]$ to the above difference system satisfies:

- $Q[E] h[n]=P[E] \delta[n]$
- subject to initial conditions

$$
h[-1]=h[-2]=\cdots=h[-N]=0
$$

Example 6.4

iteratively compute the first two values of the impulse response $h[n]$ of:

$$
y[n]-0.6 y[n-1]-0.16 y[n-2]=5 x[n]
$$

Solution: letting the input $x[n]=\delta[n]$ and the output $y[n]=h[n]$, we have

$$
h[n]=0.6 h[n-1]+0.16 h[n-2]+5 \delta[n]
$$

let $h[-1]=h[-2]=0$; setting $n=0$ in this equation yields

$$
h[0]=0.6(0)+0.16(0)+5(1)=5
$$

setting $n=1$ in the same equation and using $h[0]=5$, we obtain

$$
h[1]=0.6(5)+0.16(0)+5(0)=3
$$

continuing this way, we can determine any number of terms of $h[n]$

Closed form expression

the impulse response to system (6.3) with $a_{N} \neq 0$ can be expressed as

$$
h[n]=A_{0} \delta[n]+y_{c}[n] u[n]
$$

- $A_{0}=b_{N} / a_{N}\left(\right.$ assuming $\left.a_{N} \neq 0\right)$
- $y_{c}[n]$ is a linear combination of the characteristic modes
- for unrepeated roots $y_{c}[n]=c_{1} \gamma_{1}^{n}+\cdots+c_{N} \gamma_{N}^{n}$
- repeated roots has form as in page 6.6
- to find the N unknowns c_{1}, \ldots, c_{N}, we need to compute N values $h[0], h[1], h[2], \ldots, h[N-1]$ iteratively

Finding A_{0} : substituting the above into (6.3), we obtain

$$
Q[E]\left(A_{0} \delta[n]+y_{c}[n] u[n]\right)=P[E] \delta[n]
$$

since $y_{c}[n]$ is made up of characteristic modes, $Q[E] y_{c}[n]=0$; hence
$A_{0}\left(\delta[n+N]+a_{1} \delta[n+N-1]+\cdots+a_{N} \delta[n]\right)=b_{0} \delta[n+N]+\cdots+b_{N} \delta[n]$
setting $n=0$ and using $\delta[m]=0$ for all $m \neq 0$, and $\delta[0]=1$, we obtain

$$
A_{0} a_{N}=b_{N} \quad \Longrightarrow \quad A_{0}=\frac{b_{N}}{a_{N}} \quad\left(\text { assuming } a_{N} \neq 0\right)
$$

Example 6.5

determine the unit impulse response $h[n]$ for a system specified by the equation

$$
y[n]-0.6 y[n-1]-0.16 y[n-2]=5 x[n]
$$

Solution: this equation can be expressed in the advance form as

$$
y[n+2]-0.6 y[n+1]-0.16 y[n]=5 x[n+2]
$$

or in advance operator form as

$$
\left(E^{2}-0.6 E-0.16\right) y[n]=5 E^{2} x[n]
$$

the characteristic polynomial is

$$
\gamma^{2}-0.6 \gamma-0.16=(\gamma+0.2)(\gamma-0.8)
$$

the characteristic modes are $(-0.2)^{n}$ and $(0.8)^{n}$; therefore,

$$
y_{c}[n]=c_{1}(-0.2)^{n}+c_{2}(0.8)^{n}
$$

by inspection, we see that $a_{N}=-0.16$ and $b_{N}=0$; hence

$$
h[n]=\left[c_{1}(-0.2)^{n}+c_{2}(0.8)^{n}\right] u[n]
$$

to determine c_{1} and c_{2}, we need to find two values of $h[n]$ iteratively; from the example in page 6.16 , we know that $h[0]=5$ and $h[1]=3$; hence

$$
\left.\begin{array}{l}
h[0]=5=c_{1}+c_{2} \\
h[1]=3=-0.2 c_{1}+0.8 c_{2}
\end{array}\right\} \quad \Rightarrow \quad \begin{aligned}
& c_{1}=1 \\
& c_{2}=4
\end{aligned}
$$

therefore,

$$
h[n]=\left[(-0.2)^{n}+4(0.8)^{n}\right] u[n]
$$

Other cases

when $a_{N}=0$ and $a_{N-1} \neq 0$, then

$$
h[n]=A_{0} \delta[n]+A_{1} \delta[n-1]+y_{c}[n] u[n]
$$

- $y_{c}[n]$ contains the characteristic terms of $\hat{Q}[\gamma]=Q[\gamma] / \gamma$
- to find the unknowns $A_{0}, A_{1}, c_{1}, \ldots, c_{N}$, we need to compute $N+1$ values $h[0], h[1], h[2], \ldots, h[N]$ iteratively
when $a_{N}=a_{N-1}=0$ and $a_{N-2} \neq 0$, then

$$
h[n]=A_{0} \delta[n]+A_{1} \delta[n-1]+A_{2} \delta[n-2]+y_{c}[n] u[n]
$$

- $y_{c}[n]$ contains the characteristic terms of $\hat{Q}[\gamma]=Q[\gamma] / \gamma^{2}$
- to find the unknowns $A_{0}, A_{1}, A_{2}, c_{1}, \ldots, c_{N}$, we need to compute $N+1$ values $h[0], h[1], h[2], \ldots, h[N]$ iteratively

Example 6.6

determine the impulse response $h[n]$ of a system described by the equation

$$
\left(E^{3}+E^{2}\right) y[n]=x[n]
$$

Solution: in this case, $a_{N}=a_{N-1}=0$, and the characteristic roots: one at -1 and two at 0 ; only the nonzero characteristic root shows up in $y_{c}[n]$, so

$$
h[n]=A_{0} \delta[n]+A_{1} \delta[n-1]+A_{2} \delta[n-2]+c_{1}(-1)^{n} u[n]
$$

to determine the coefficients A_{0}, A_{1}, A_{2}, and c_{1}, we require $N+1=4$ values of $h[n](n \geq 0)$, which we obtain iteratively using Matlab
$\mathrm{n}=(-3: 3)$; delta $=(\mathrm{n}==0)$; $\mathrm{h}=$ zeros(size(n$)$);
for ind $=$ find ($n>=0$),
$h($ ind $)=-h(i n d-1)+d e l t a(i n d-3) ;$
end
$h(n>=0)$
[output: ans = 000011 using these values to solve for th constants, we get

$$
h[n]=\delta[n]-\delta[n-1]+\delta[n-2]-(-1)^{n} u[n]
$$

Solving LTI difference system in MATLAB

we can use the filter command in MATLAB to solve constant coefficient difference equations:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{N} b_{k} x[n-k]
$$

Example: $y[n]-0.6 y[n-1]-0.16 y[n-2]=5 x[n]$ with $x[n]=\delta[n]$
$\mathrm{n}=(0: 19) ;$ delta $=@(\mathrm{n}) 1.0 . *(\mathrm{n}==0)$;
$\mathrm{a}=[1-0.6-0.16] ; \mathrm{b}=[500]$;
h = filter (b,a,delta(n));
clf; stem(n,h,'k'); xlabel('n'); ylabel('h[n]');

Exercises

- find the unit impulse response $h[n]$ of the LTID systems
(a) $y[n+1]-y[n]=x[n]$
(b) $y[n]-5 y[n-1]+6 y[n-2]=8 x[n-1]-19 x[n-2]$
(c) $y[n+2]-4 y[n+1]+4 y[n]=2 x[n+2]-2 x[n+1]$

Answers:

(a) $h[n]=u[n-1]$
(b) $h[n]=-\frac{19}{6} \delta[n]+\left[\frac{3}{2}(2)^{n}+\frac{5}{3}(3)^{n}\right] u[n]$
(c) $h[n]=(2+n) 2^{n} u[n]$

- Nonrecursive impulse response. the find the iupulse response of $y[n]=2 x[n]-2 x[n-1]$
Answer: $h[n]=2 \delta[n]-2 \delta[n-1]$

Outline

- zero-input response
- unit-impulse response
- zero-state response and convolution
- system stability

Derivation of zero-state response

we can express any arbitrary input $x[n]$ as a sum of impulse components:

$$
\begin{aligned}
x[n]= & x[0] \delta[n]+x[1] \delta[n-1]+x[2] \delta[n-2]+\cdots \\
& +x[-1] \delta[n+1]+x[-2] \delta[n+2]+\cdots \\
= & \sum_{m=-\infty}^{\infty} x[m] \delta[n-m]
\end{aligned}
$$

let $h[n]$ be the system response to impulse input $\delta[n](\delta[n] \Longrightarrow h[n])$, then due to linearity and time invariance

$$
x[n]=\sum_{m=-\infty}^{\infty} x[m] \delta[n-m] \Longrightarrow \underbrace{\sum_{m=-\infty}^{\infty} x[m] h[n-m]}_{y[n]}
$$

the right-hand side is the system response $y[n]$ to input $x[n]$

Zero-state response and convolution

the zero-state response is:

$$
y[n]=x[n] * h[n-m]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

- the summation is known as the convolution sum of $x[n]$ and $h[n]$
- for causal input and system ($h[k]=x[k]=0$ for $k<0$), we have

$$
y[n]=\sum_{m=0}^{n} x[m] h[n-m]
$$

- we use $*$ to denote the convolution sum two signals $x_{1}[n]$ and $x_{2}[n]$:

Example 6.7

determine $c[n]=x[n] * g[n]$ analytically for

$$
x[n]=(0.8)^{n} u[n] \quad \text { and } \quad g[n]=(0.3)^{n} u[n]
$$

Solution: note that $x[m]=(0.8)^{m} u[m]$ and $g[n-m]=(0.3)^{n-m} u[n-m]$ both $x[n]$ and $g[n]$ are causal, thus

$$
\begin{aligned}
c[n]=\sum_{m=0}^{n} x[m] g[n-m] & =\sum_{m=0}^{n}(0.8)^{m} u[m](0.3)^{n-m} u[n-m] \\
& =\left\{\begin{array}{cc}
\sum_{m=0}^{n}(0.8)^{m}(0.3)^{n-m} & n \geq 0 \\
0 & n<0
\end{array}\right.
\end{aligned}
$$

or

$$
\begin{aligned}
c[n]=(0.3)^{n} \sum_{m=0}^{n}(0.8 / 0.3)^{m} u[n] & =(0.3)^{n} \frac{1-(0.8 / 0.3)^{n+1}}{1-(0.8 / 0.3)} u[n] \\
& =2\left[(0.8)^{n+1}-(0.3)^{n+1}\right] u[n]
\end{aligned}
$$

Properties of convolution sum

Commutative

$$
x_{1}[n] * x_{2}[n]=x_{2}[n] * x_{1}[n]
$$

Distributive

$$
x_{1}[n] *\left(x_{2}[n]+x_{3}[n]\right)=x_{1}[n] * x_{2}[n]+x_{1}[n] * x_{3}[n]
$$

Associative

$$
x_{1}[n] *\left(x_{2}[n] * x_{3}[n]\right)=\left(x_{1}[n] * x_{2}[n]\right) * x_{3}[n]
$$

Shifting: if $x_{1}[n] * x_{2}[n]=y[n]$ then

$$
x_{1}[n-m] * x_{2}[n-p]=y[n-m-p]
$$

Convolution with an Impulse

$$
x[n] * A \delta\left[n-n_{0}\right]=A x\left[n-n_{0}\right]
$$

Differencing: if $c[n]=x_{1}[n] * x_{2}[n]$ then

$$
c[n]-c[n-1]=x_{1}[n] *\left(x_{2}[n]-x_{2}[n-1]\right)
$$

Summation: if $c[n]=x_{1}[n] * x_{2}[n]$ then

$$
\text { sum of } c=\left(\text { sum of } x_{1}\right) \times\left(\text { sum of } x_{2}\right)
$$

Width and length properties: the width of a signal is the number of its elements (length) minus one

- if $x_{1}[n]$ and $x_{2}[n]$ have finite widths of W_{1} and W_{2}, respectively, then the width of $x_{1}[n] * x_{2}[n]$ is $W_{1}+W_{2}$
- if $x_{1}[n]$ and $x_{2}[n]$ have finite lengths of L_{1} and L_{2} elements, then the length of $x_{1}[n] * x_{2}[n]$ is $L_{1}+L_{2}-1$ elements

Example 6.8 (convolution from table)

- many convolution sums can be determined from already determined signal pairs (convolution table)
- we can combine these pairs with convolution properties to find more complicated convolutions

Example: use the table to find the following convolutions
(a) $y_{a}[n]=(0.8)^{n} u[n] * u[n]$
(b) $y_{b}[n]=(0.8)^{n} u[n-1] * u[n+3]$

Solution:

(a) direct application of pair 4 from table gives

$$
y_{a}[n]=(0.8)^{n} u[n] * u[n]=\frac{0.8^{n+1}-1}{0.8-1} u[n]=5\left(1-(0.8)^{n+1}\right) u[n]
$$

(b) we have

$$
y_{b}[n]=(0.8)^{n} u[n-1] * u[n+3]=0.8(0.8)^{n-1} u[n-1] * u[n+3]
$$

hence from shifting property

$$
y_{b}[n]=0.8 y_{a}[n+2]=4\left(1-(0.8)^{n+3}\right) u[n+2]
$$

Graphical procedure

$$
c[n]=x[n] * g[n]=\sum_{m=-\infty}^{\infty} x[m] g[n-m]
$$

the convolution operation can be performed as follows:

1. we first plot $x[m]$ and $g[n-m]$ as functions of m
2. invert $g[m]$ about the vertical axis $(m=0)$ to obtain $g[-m]$
3. shift $g[-m]$ by n units to obtain $g[n-m]$

- for $n>0$, the shift is to the right (delay)
- for $n<0$, the shift is to the left (advance)

4. multiply $x[m]$ and $g[n-m]$ and add all the products to obtain $c[n]$ (the procedure is repeated for each value of n over the range $-\infty$ to ∞)

Example 6.9

find $c[n]=x[n] * g[n]$, where

$$
x[n]=(0.8)^{n} u[n] \quad \text { and } \quad g[n]=(0.3)^{n} u[n]
$$

Solution: note that

$$
x[m]=(0.8)^{m} \quad \text { and } \quad g[n-m]=(0.3)^{n-m}
$$

- for $n<0$, there is no overlap, so that $c[n]=0$ for $n<0$
- for $n \geq 0$, the two functions overlap over the interval $0 \leq m \leq n$:

$$
\begin{aligned}
c[n] & =\sum_{m=0}^{n} x[m] g[n-m]=\sum_{m=0}^{n}(0.8)^{m}(0.3)^{n-m}=(0.3)^{n} \sum_{m=0}^{n}\left(\frac{0.8}{0.3}\right)^{m} \\
& =2\left[(0.8)^{n+1}-(0.3)^{n+1}\right] \quad n \geq 0
\end{aligned}
$$

combining pieces, we see that

$$
c[n]=2\left[(0.8)^{n+1}-(0.3)^{n+1}\right] u[n]
$$

Example 6.10: Sliding-tape method

use the sliding-tape method to find $x[n] * g[n]$ for the signals shown below

Solution: in this procedure we represent the sequences $x[m]$ and $g[m]$ as tapes; we then get the $g[-m]$ tape by inverting the $g[m]$ tape about the origin ($m=0$)

rotate the g tape about the vertical axis

we now shift the inverted tape by n slots, multiply values on two tapes in adjacent slots, and add all the products to find $c[n]$

$$
\begin{aligned}
& c[0]=(-2 \times 1)+(-1 \times 1)+(0 \times 1)=-3 \\
& c[1]=(-2 \times 1)+(-1 \times 1)+(0 \times 1)+(1 \times 1)=-2 \\
& c[2]=(-2 \times 1)+(-1 \times 1)+(0 \times 1)+(1 \times 1)+(2 \times 1)=0 \\
& c[3]=(-2 \times 1)+(-1 \times 1)+(0 \times 1)+(1 \times 1)+(2 \times 1)+(3 \times 1)=3 \\
& c[4]=(-2 \times 1)+(-1 \times 1)+(0 \times 1)+(1 \times 1)+(2 \times 1)+(3 \times 1)+(4 \times 1)=7 \\
& c[5]=(-2 \times 1)+(-1 \times 1)+(0 \times 1)+(1 \times 1)+(2 \times 1)+(3 \times 1)+(4 \times 1)=7 \\
& c[n]=7 \quad n \geq 4
\end{aligned}
$$

similarly, we compute $c[n]$ for negative n by sliding the tape backward:

$$
\begin{array}{r}
c[-1]=(-2 \times 1)+(-1 \times 1)=-3 \\
c[-2]=(-2 \times 1)=-2 \\
c[-3]=0 \\
c[n]=0 \quad n \leq-4
\end{array}
$$

Interconnected systems

Parallel systems

Cascade systems

because $h_{1}[n] * h_{2}[n]=h_{2}[n] * h_{1}[n]$, linear systems commute; hence, we can interchange the order of cascade systems without affecting the final result

Example:

- if $x[n] \Longrightarrow y[n]$, then $\sum_{k=-\infty}^{n} x[k] \Longrightarrow \sum_{k=-\infty}^{n} y[k]$
- if $x[n]=\delta[n]$ then $y[n]=h[n]$ and $\sum_{k=-\infty}^{n} x[k]=u[n]$

Unit-step response: the unit step response of an LTID system with impulse response $h[n]$ is

$$
g[n]=\sum_{k=-\infty}^{n} h[k]
$$

it also holds that

$$
h[n]=g[n]-g[n-1]
$$

Inverse systems

the cascade of a system $h[n]$ with its inverse $h_{i}[n]$ is an identity system

$$
h[n] * h_{i}[n]=\delta[n]
$$

Example: we can show that the accumulator system $y[n]=\sum_{k=-\infty}^{n} x[k]$ and the backward difference system $y[n]=x[n]-x[n-1]$ are the inverse of each other
to see this, note that the impulse response of the accumulator and backward difference systems are is

$$
h_{\mathrm{acc}}[n]=\sum_{k=-\infty}^{n} \delta[k]=u[n] \quad \text { and } \quad h_{\mathrm{bdf}}[n]=\delta[n]-\delta[n-1]
$$

we can verify that

$$
h_{\mathrm{acc}} * h_{\mathrm{bdf}}=u[n] *\{\delta[n]-\delta[n-1]\}=u[n]-u[n-1]=\delta[n]
$$

Example 6.11 (total response)

total response of LTID system $=\mathrm{ZIR}+x[n] * h[n]$ ZSR

find the output of the system described by the equation

$$
y[n+2]-0.6 y[n+1]-0.16 y[n]=5 x[n+2]
$$

with initial conditions $y[-1]=0, y[-2]=25 / 4$ and input $x[n]=(4)^{-n} u[n]$

Solution: from slides 6.7 and 6.19, we know that zero-input response and impulse response are

$$
\begin{aligned}
y_{0}[n] & =0.2(-0.2)^{n}+0.8(0.8)^{n} \\
h[n] & =\left[(-0.2)^{n}+4(0.8)^{n}\right] u[n]
\end{aligned}
$$

the zero-state response is:

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =(0.25)^{n} u[n] *\left[(-0.2)^{n} u[n]+4(0.8)^{n} u[n]\right] \\
& =(0.25)^{n} u[n] *(-0.2)^{n} u[n]+(0.25)^{n} u[n] * 4(0.8)^{n} u[n]
\end{aligned}
$$

using pair 4 of convolution table, we get

$$
\begin{aligned}
y[n] & =\left[\frac{(0.25)^{n+1}-(-0.2)^{n+1}}{0.25-(-0.2)}+4 \frac{(0.25)^{n+1}-(0.8)^{n+1}}{0.25-0.8}\right] u[n] \\
& =\left(2.22\left[(0.25)^{n+1}-(-0.2)^{n+1}\right]-7.27\left[(0.25)^{n+1}-(0.8)^{n+1}\right]\right) u[n] \\
& =\left[-1.26(0.25)^{n}+0.444(-0.2)^{n}+5.81(0.8)^{n}\right] u[n]
\end{aligned}
$$

therefore, the total response for $n \geq 0$ is

$$
\text { total response }=\underbrace{0.2(-0.2)^{n}+0.8(0.8)^{n}}_{\text {ZIR }}+\underbrace{0.444(-0.2)^{n}+5.81(0.8)^{n}-1.26(4)^{-n}}_{\text {ZSR }}
$$

Natural and forced response

- when all the characteristic mode terms in the total response are lumped together, the resulting component is the natural response
- the remaining part of the total response that is made up of noncharacteristic modes is the forced response

Example: the characteristic modes of the previous system are $(-0.2)^{n}$ and $(0.8)^{n}$; hence

$$
\text { total response }=\underbrace{0.644(-0.2)^{n}+6.61(0.8)^{n}}_{\text {natural response }} \underbrace{-1.26(4)^{-n}}_{\text {forced response }} n \geq 0
$$

just like differential equations, the classical solution to difference equations includes the natural and forced responses

Finding the zero-state response using MATLAB

use the MATLAB filter command to compute and sketch the zero-state response for the system described by $\left(E^{2}+0.5 E-1\right) y[n]=\left(2 E^{2}+6 E\right) x[n]$ with input $x[n]=4^{-n} u[n]$
$\mathrm{n}=(0: 11) ; \mathrm{x}=@(\mathrm{n}) 4 .^{\wedge}(-\mathrm{n}) . *(\mathrm{n}>=0)$;
$\mathrm{a}=[10.5-1] ; \mathrm{b}=\left[\begin{array}{ll}2 & 6\end{array}\right] ; \mathrm{y}=$ filter $(\mathrm{b}, \mathrm{a}, \mathrm{x}(\mathrm{n}))$;
clf; stem(n,y,'k'); xlabel('n'); ylabel('y[n]');
axis([-0.5 11.5 -20 25]);

although the input is bounded and quickly decays to zero, the system itself is unstable and an unbounded output results.

Discrete-time convolution using MATLAB

$\mathrm{x}=\left[\begin{array}{llllll}0 & 1 & 2 & 3 & 2 & 1\end{array}\right] ; \mathrm{g}=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right] ;$
$\mathrm{n}=(0: 1: \operatorname{length}(\mathrm{x})+$ length $(\mathrm{g})-2)$;
$c=\operatorname{conv}(x, g)$;
clf; stem(n, c,'k'); xlabel('n'); ylabel('c[n]');
axis([-0.5 10.5010$])$;
(the starting point of the result is determined by simply add the starting points of each signal being convolved: in our case $0+0=0$)

Exercises

- use both the convolution sum definition and table to show that $(0.8)^{n} u[n] * u[n]=5\left[1-(0.8)^{n+1}\right] u[n]$
- use convolution sum table and properties to find
(a) $n 3^{-n} u[n] *(0.2)^{n} u[n]$
(b) $e^{-n} u[n] * 2^{-n} u[n]$
(c) $j \delta[n+1] * 2^{-n} u[n]$

Answers:
(a) $\frac{15}{4}\left[(0.2)^{n}-\left(1-\frac{2}{3} n\right) 3^{-n}\right] u[n]$; (b) $\frac{2}{2-e}\left[e^{-n}-\frac{e}{2} 2^{-n}\right] u[n]$

- consider an LTID system that has an impulse response $h[n]=2^{-n} u[n]$; using the input $x[n]=u[n]-u[n-10]$, determine and sketch the zero-state response of this system over $-10 \leq n \leq 20$
- find the output (response) $y[n]$ of the system described in example on page 6.43 if the input is modified to be $x[n]=\delta[n]+4^{-n} u[n]$ Answer: $y[n]=\left[-1.26(4)^{-n}+1.444(-0.2)^{n}+9.81(0.8)^{n}\right] u[n]$

Exercises

- find the convolution $(0.8)^{n} u[n-1] * u[n+3]$ graphically and sketch the result [Answer: $4\left(1-(0.8)^{n+3}\right) u[n+2$]]
- use the sliding-tape technique to find $c[n]=x[n] * g[n]$; also, verify the width property of convolution

Answer:

- use the sliding-tape procedure to determine and plot $y[n]=x[n] * h[n]$ for $x[n]=(3-|n|)(u[n+3]-u[n-4])$ and $h[n]=u[-n+4]-u[-n-2]$; verify the convolution width property

Outline

- zero-input response
- unit-impulse response
- zero-state response and convolution
- system stability

BIBO stability

an LTID system is BIBO stable if every bounded input results in a bounded output; or if there exists a K such that

$$
\sum_{n=-\infty}^{\infty}|h[n]|<K<\infty
$$

- absolutely summable $h[n]$
- otherwise it is unstable
proof: note that

$$
|y[n]|=\left|\sum_{m=-\infty}^{\infty} h[m] x[n-m]\right| \leq \sum_{m=-\infty}^{\infty}|h[m]||x[n-m]|
$$

if $x[n]$ is bounded, then $|x[n-m]|<K_{0}<\infty$, and

$$
|y[n]| \leq K_{0} \sum_{m=-\infty}^{\infty}|h[m]|
$$

clearly the output is bounded if $\sum_{m=-\infty}^{\infty}|h[m]|$ is bounded

Internal stability

for LTID systems, internal stability, called asymptotical stability or stability in the sense of Lyapunov (also the zero-input stability), is defined in terms of the zero-input response of a system
an LTID system is

1. asymptotically stable if, and only if, all the characteristic roots are inside the unit circle (the roots may be simple or repeated)
2. marginally stable if and only if there are no roots outside the unit circle and there are some unrepeated roots on the unit circle
3. unstable if, and only if, either one or both of the following conditions exist:
(i) at least one root is outside the unit circle
(ii) there are repeated roots on the unit circle

if $|\gamma|<1, \quad$ then $\gamma^{n} \rightarrow 0$ as $n \rightarrow \infty$
if $|\gamma|>1, \quad$ then $\gamma^{n} \rightarrow \infty$ as $n \rightarrow \infty$
if $|\gamma|=1, \quad$ then $|\gamma|^{n}=1$ for all n

Relation with BIBO stability

- an asymptotically stable system is BIBO-stable
- the converse is not necessarily true; BIBO (external) stability cannot ensure internal (asymptotic) stability
- for a difference LTI system, marginal stability or asymptotic instability implies that the system is BIBO-unstable

Example 6.12

an LTID systems consists of two subsystems S_{1} and S_{2} in cascade

the impulse response of these systems are

$$
h_{1}[n]=4 \delta[n]-3(0.5)^{n} u[n] \quad \text { and } \quad h_{2}[n]=2^{n} u[n]
$$

investigate the BIBO and asymptotic stability of the composite system

Solution: the composite system impulse response $h[n]$ is given by

$$
\begin{aligned}
h[n]=h_{1}[n] * h_{2}[n]=h_{2}[n] * h_{1}[n] & =2^{n} u[n] *\left(4 \delta[n]-3(0.5)^{n} u[n]\right) \\
& =4(2)^{n} u[n]-3\left[\frac{2^{n+1}-(0.5)^{n+1}}{2-0.5}\right] u[n] \\
& =(0.5)^{n} u[n]
\end{aligned}
$$

- the system is BIBO-stable because its impulse response $(0.5)^{n} u[n]$ is absolutely summable
- the system S_{2} is asymptotically unstable because its characteristic root, 2 , lies outside the unit circle; this system will eventually burn out (or saturate) because of the unbounded characteristic response
- this example shows that BIBO stability does not necessarily ensure asymptotic stability

Example 6.13

determine the internal and external stability of systems specified by the following equations; in each case plot the characteristic roots in the complex plane
(a) $y[n+2]+2.5 y[n+1]+y[n]=x[n+1]-2 x[n]$
(b) $y[n]-y[n-1]+0.21 y[n-2]=2 x[n-1]+3 x[n-2]$
(c) $y[n+3]+2 y[n+2]+\frac{3}{2} y[n+1]+\frac{1}{2} y[n]=x[n+1]$
(d) $\left(E^{2}-E+1\right)^{2} y[n]=(3 E+1) x[n]$

Solution:

(a) the characteristic polynomial is $\gamma^{2}+2.5 \gamma+1=(\gamma+0.5)(\gamma+2)$ and the characteristic roots are -0.5 and $-2 ;-2$ lies outside the unit circle), so the system is BIBO-unstable and also asymptotically unstable
(b) the characteristic polynomial is $\gamma^{2}-\gamma+0.21=(\gamma-0.3)(\gamma-0.7)$ and the characteristic roots are 0.3 and 0.7 , both of which lie inside the unit circle; the system is BIBO-stable and asymptotically stable
(c) the characteristic polynomial is

$$
\gamma^{3}+2 \gamma^{2}+\frac{3}{2} \gamma+\frac{1}{2}=(\gamma+1)\left(\gamma^{2}+\gamma+\frac{1}{2}\right)=(\gamma+1)(\gamma+0.5-j 0.5)(\gamma+0.5+j 0.5)
$$

the characteristic roots are $-1,-0.5 \pm j 0.5$; one of the characteristic roots is on the unit circle and the remaining two roots are inside the unit circle; the system is BIBO-unstable but marginally stable
(d) the characteristic polynomial is

$$
\left(\gamma^{2}-\gamma+1\right)^{2}=\left(\gamma-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)^{2}\left(\gamma-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)^{2}
$$

the characteristic roots are $(1 / 2) \pm j(\sqrt{3} / 2)=1 e^{ \pm j(\pi / 3)}$ repeated twice, and they lie on the unit circle; the system is BIBO-unstable and asymptotically unstable

Exercise

determine BIBO (external) and asymptotic (internal) stability of each system
(a) $(E+1)\left(E^{2}+6 E+25\right) y[n]=3 E x[n]$
(b) $\left(E^{2}-2 E-1\right)(E+0.5) y[n]=\left(E^{2}+2 E+3\right) x[n]$

Answers: both systems are BIBO-and asymptotically unstable

References

- B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 3.
- M. J. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB, McGraw Hill, chapter 5 (5.3).

