
6. Time-domain analysis of discrete-time systems

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability
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6.1



Difference equation

Advance-form

𝑦[𝑛 + 𝑁] + 𝑎1𝑦[𝑛 + 𝑁 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 + 1] + 𝑎𝑁 𝑦[𝑛]
= 𝑏0𝑥 [𝑛 + 𝑀] + 𝑏1𝑥 [𝑛 + 𝑀 − 1] + · · · + 𝑏𝑀𝑥 [𝑛]

■ time-invariant if coefficients 𝑎𝑖 , 𝑏𝑖 are constants (independent of 𝑛)

■ causal if 𝑀 ≤ 𝑁

Causal delay-form: let 𝑀 = 𝑁 and replace all 𝑛 by 𝑛 − 𝑁 :

𝑦[𝑛] + 𝑎1𝑦[𝑛 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 − 𝑁 + 1] + 𝑎𝑁 𝑦[𝑛 − 𝑁]
= 𝑏0𝑥 [𝑛] + 𝑏1𝑥 [𝑛 − 1] + · · · + 𝑏𝑁−1𝑥 [𝑛 − 𝑁 + 1] + 𝑏𝑁𝑥 [𝑛 − 𝑁]

■ delay form is more natural form since delay operation is realizable

■ advance form is more mathematically convenience compared to delay form
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LTI difference system

Operator notation: for discrete-time systems, the notation 𝐸 is used to denote
the operation for advancing a sequence by one time unit

■ 𝐸𝑥 [𝑛] ≜ 𝑥 [𝑛 + 1]
■ 𝐸 𝑘𝑥 [𝑛] ≜ 𝑥 [𝑛 + 𝑘]

LTID (difference) system: the advance-form difference equation with 𝑀 = 𝑁

can be expressed as

𝑄 [𝐸]𝑦[𝑛] = 𝑃[𝐸]𝑥 [𝑛] (6.1)

where 𝑄 [𝐸] and 𝑃[𝐸] are 𝑁 th-order polynomial operators

𝑄 [𝐸] = 𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁
𝑃[𝐸] = 𝑏0𝐸𝑁 + 𝑏1𝐸𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁
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Zero-input response

the zero-input response 𝑦0 [𝑛] is the solution of (6.1) with 𝑥 [𝑛] = 0:(
𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁

)︸                                            ︷︷                                            ︸
𝑄[𝐸 ]

𝑦0 [𝑛] = 0
(6.2)

■ a linear combination of 𝑦0 [𝑛] and advanced 𝑦0 [𝑛] is zero for all 𝑛

■ possible if and only if 𝑦0 [𝑛] and advanced 𝑦0 [𝑛] share the same form; only
an exponential function 𝛾𝑛 has this property (𝐸 𝑘 {𝛾𝑛} = 𝛾𝑘𝛾𝑛)

■ let 𝑦0 [𝑛] = 𝑐𝛾𝑛, then using 𝐸 𝑘𝑦0 [𝑛] = 𝑐𝛾𝑛+𝑘 in (6.2), we obtain

𝑐

(
𝛾𝑁 + 𝑎1𝛾𝑁−1 + · · · + 𝑎𝑁−1𝛾 + 𝑎𝑁

)
𝛾𝑛 = 𝑐𝑄 [𝛾] = 0

hence, 𝑐𝛾𝑛 satisfies the zero-input difference equatio (6.2) if 𝑄 [𝛾] = 0
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Characteristic equation

𝑄 [𝛾] = 𝛾𝑁 + 𝑎1𝛾𝑁−1 + · · · + 𝑎𝑁−1𝛾 + 𝑎𝑁 = 0

■ 𝑄 [𝛾] is the characteristic polynomial

■ 𝑄 [𝛾] = 0 has 𝑁 solutions 𝛾1, 𝛾2, . . . , 𝛾𝑁 called characteristic roots of the
system or characteristic values (also eigenvalues) of the system

■ all 𝑐1𝛾𝑛1 , 𝑐2𝛾𝑛2 , . . . , 𝑐𝑁𝛾
𝑛
𝑁

satisfy the zero-input difference equation

■ the general form of the zero-input response depends on whether the roots are
distinct or repeated
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Zero-input response

Distinct roots: for distinct roots, 𝛾1, . . . , 𝛾𝑁 , the zero input solution is

𝑦0 [𝑛] = 𝑐1𝛾𝑛1 + 𝑐2𝛾𝑛2 + · · · + 𝑐𝑁𝛾𝑛𝑁

■ 𝛾1, . . . , 𝛾𝑁 are the characteristic modes or natural modes of the system
■ 𝑐1, 𝑐2, . . . , 𝑐𝑁 are constants determined from 𝑁 auxiliary conditions (e.g.,

initial conditions)

Repeated roots: if the characteristic polynomial has a repeated root:

𝑄 [𝛾] = (𝛾 − 𝛾1)𝑟 (𝛾 − 𝛾𝑟+1) (𝛾 − 𝛾𝑟+2) · · · (𝛾 − 𝛾𝑁 )

then the zero-input response of the system is

𝑦0 [𝑛] =
(
𝑐1 + 𝑐2𝑛 + · · · + 𝑐𝑟𝑛𝑟−1

)
𝛾𝑛1 +

𝑁∑︁
𝑖=𝑟+1

𝑐𝑖𝛾
𝑛
𝑖

■ root 𝛾1 repeats 𝑟 times (root of multiplicity 𝑟)
■ the characteristic modes for 𝛾1 are 𝛾𝑛1 , 𝑛𝛾

𝑛
1 , 𝑛2𝛾𝑛1 , . . . , 𝑛

𝑟−1𝛾𝑛1
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Example 6.1

determine the zero-input response 𝑦0 [𝑛] of

𝑦[𝑛 + 2] − 0.6𝑦[𝑛 + 1] − 0.16𝑦[𝑛] = 5𝑥 [𝑛 + 2]

with input 𝑥 [𝑛] = 4−𝑛𝑢[𝑛] and initial conditions 𝑦[−1] = 0 and 𝑦[−2] = 25/4

Solution: the system of equation in operator notation is(
𝐸2 − 0.6𝐸 − 0.16

)
𝑦[𝑛] = 5𝐸2𝑥 [𝑛]

the characteristic polynomial is

𝑄 [𝛾] = 𝛾2 − 0.6𝛾 − 0.16 = (𝛾 + 0.2) (𝛾 − 0.8)

the characteristic equation is

(𝛾 + 0.2) (𝛾 − 0.8) = 0

the characteristic roots are 𝛾1 = −0.2 and 𝛾2 = 0.8
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the zero-input response is

𝑦0 [𝑛] = 𝑐1 (−0.2)𝑛 + 𝑐2 (0.8)𝑛

to find the constants 𝑐1 and 𝑐2, we set 𝑛 = −1 and −2 in the previous equation
and use 𝑦0 [−1] = 0 and 𝑦0 [−2] = 25/4 to obtain:

0 = −5𝑐1 +
5

4
𝑐2

25
4 = 25𝑐1 + 25

16𝑐2

solving gives 𝑐1 = 1
5 and 𝑐2 = 4

5 ; therefore

𝑦0 [𝑛] = 1
5 (−0.2)

𝑛 + 4
5 (0.8)

𝑛, 𝑛 ≥ 0
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Example 6.2

(
𝐸2 + 6𝐸 + 9

)
𝑦[𝑛] =

(
2𝐸2 + 6𝐸

)
𝑥 [𝑛]

determine the zero-input response 𝑦0 [𝑛] if 𝑦0 [−1] = −1/3 and 𝑦0 [−2] = −2/9

Solution: the characteristic polynomial is 𝛾2 + 6𝛾 + 9 = (𝛾 + 3)2, and we have a
repeated characteristic root at 𝛾 = −3; the characteristic modes are (−3)𝑛 and
𝑛(−3)𝑛; hence, the zero-input response is

𝑦0 [𝑛] = (𝑐1 + 𝑐2𝑛) (−3)𝑛

we can determine the constants 𝑐1 and 𝑐2 from the initial conditions, doing so we
get 𝑐1 = 4 and 𝑐2 = 3; hence

𝑦0 [𝑛] = (4 + 3𝑛) (−3)𝑛 𝑛 ≥ 0
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Complex roots

for difference equation with real coefficients, complex roots appear as conjugates
pairs:

𝛾 = |𝛾 |𝑒 𝑗𝛽 and 𝛾∗ = |𝛾 |𝑒− 𝑗𝛽

complex form: the zero-input response is

𝑦0 [𝑛] = 𝑐1𝛾𝑛 + 𝑐2 (𝛾∗)𝑛 = 𝑐1 |𝛾 |𝑛𝑒 𝑗𝛽𝑛 + 𝑐2 |𝛾 |𝑛𝑒− 𝑗𝛽𝑛

real-form: let 𝑐1 = 𝑐
2 𝑒

𝑗 \ and 𝑐2 = 𝑐
2 𝑒

− 𝑗 \ , then we can write output as

𝑦0 [𝑛] = 𝑐 |𝛾 |𝑛 cos(𝛽𝑛 + \)

where 𝑐 and \ are constants determined from the auxiliary conditions
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Example 6.3

(
𝐸2 − 1.56𝐸 + 0.81

)
𝑦[𝑛] = (𝐸 + 3)𝑥 [𝑛]

determine the zero-input response 𝑦0 [𝑛] if 𝑦0 [−1] = 2 and 𝑦0 [−2] = 1

Solution: the characteristic equation is
(
𝛾2 − 1.56𝛾 + 0.81

)
= 0 and the

characteristic roots are 0.78 ± 𝑗0.45 = 0.9𝑒± 𝑗 (𝜋/6) ; so the complex form
solution:

𝑦0 [𝑛] = 𝑐(0.9)𝑛𝑒 𝑗 𝜋𝑛/6 + 𝑐∗ (0.9)𝑛𝑒− 𝑗 𝜋𝑛/6

using the initial conditions 𝑦0 [−1] = 2 and 𝑦0 [−2] = 1, we find

𝑐 = 1.1550 − 𝑗0.2025 = 1.1726𝑒− 𝑗0.1735

𝑐∗ = 1.1550 + 𝑗0.2025 = 1.1726𝑒 𝑗0.1735

hence

𝑦0 [𝑛] = 1.1726𝑒− 𝑗0.1735(0.9)𝑛𝑒 𝑗 𝜋𝑛/6 + 1.1726𝑒 𝑗0.1735(0.9)𝑛𝑒− 𝑗 𝜋𝑛/6
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we can also find 𝑦0 [𝑛] using the real form of the solution; since 𝛾 = 0.9𝑒± 𝑗 (𝜋/6) ,
we have |𝛾 | = 0.9 and 𝛽 = 𝜋/6, and the real-form zero-input response is

𝑦0 [𝑛] = 𝑐(0.9)𝑛 cos( 𝜋6 𝑛 + \)

to determine the constants 𝑐 and \, we use the initial conditions:

𝑦0 [−1] = 𝑐
0.9 cos(−

𝜋
6 + \) =

√
3

1.8𝑐 cos \ +
1
1.8𝑐 sin \ = 2

𝑦0 [−2] = 𝑐
(0.9)2 cos(−

𝜋
3 + \) = 1

1.62𝑐 cos \ +
√
3

1.62𝑐 sin \ = 1

solving gives 𝑐 cos \ = 2.308 and 𝑐 sin \ = −0.397; hence

tan \ = 𝑐 sin \
𝑐 cos \ = −0.397

2.308 = −0.172, \ = tan−1 (−0.172) = −0.17 rad

substituting \ = −0.17 radian in 𝑐 cos \ = 2.308 yields 𝑐 = 2.34 and

𝑦0 [𝑛] = 2.34(0.9)𝑛 cos( 𝜋6 𝑛 − 0.17) 𝑛 ≥ 0
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Finding zero-input response iteratively using MATLAB

use MATLAB to iteratively compute and then plot the zero-input response for(
𝐸2 − 1.56𝐸 + 0.81

)
𝑦[𝑛] = (𝐸 + 3)𝑥 [𝑛] with 𝑦[−1] = 2 and 𝑦[−2] = 1

n = (-2:20)’; y = [1;2;zeros(length(n)-2,1)];

for k = 1:length(n)-2,

y(k+2) = 1.56*y(k+1)-0.81*y(k);

end;

clf; stem(n,y,’k’); xlabel(’n’); ylabel(’y[n]’);

axis([-2 20 -1.5 2.5]);
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Exercises

find and sketch the zero-input response for the systems described by the
following equations:

(a) 𝑦[𝑛 + 1] − 0.8𝑦[𝑛] = 3𝑥 [𝑛 + 1] with initial condition 𝑦[−1] = 10

(b) 𝑦[𝑛 + 1] + 0.8𝑦[𝑛] = 3𝑥 [𝑛 + 1] with initial condition 𝑦[−1] = 10

(c) 𝑦[𝑛] + 0.3𝑦[𝑛 − 1] − 0.1𝑦[𝑛 − 2] = 𝑥 [𝑛] + 2𝑥 [𝑛 − 1] with initial conditions
𝑦0 [−1] = 1 and 𝑦0 [−2] = 33

(d) 𝑦[𝑛] + 4𝑦[𝑛 − 2] = 2𝑥 [𝑛] with 𝑦[−1] = −1/(2
√
2) and 𝑦[−2] = 1/(4

√
2)

in each case verify the solutions by computing the first three terms using the
iterative method

Answers:
(a) 8(0.8)𝑛
(b) −8(−0.8)𝑛
(c) 𝑦0 [𝑛] = (0.2)𝑛 + 2(−0.5)𝑛

(d) 𝑦0 [𝑛] = (2)𝑛 cos
(
𝜋
2 𝑛 −

3𝜋
4

)
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Outline

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability



Impulse response

■ the (unit) impulse response ℎ[𝑛] is output of the system when the input is
𝛿[𝑛] with zero zero initial conditions

■ an LTI system is causal if and only if ℎ[𝑛] = 0 for 𝑛 < 0

Linear difference system(
𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁

)
︸                                            ︷︷                                            ︸

𝑄[𝐸 ]

𝑦[𝑛]

=

(
𝑏0𝐸

𝑁 + 𝑏1𝐸𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁
)

︸                                                ︷︷                                                ︸
𝑃 [𝐸 ]

𝑥 [𝑛]
(6.3)

the impulse response ℎ[𝑛] to the above difference system satisfies:
■ 𝑄 [𝐸]ℎ[𝑛] = 𝑃[𝐸]𝛿[𝑛]
■ subject to initial conditions

ℎ[−1] = ℎ[−2] = · · · = ℎ[−𝑁] = 0
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Example 6.4

iteratively compute the first two values of the impulse response ℎ[𝑛] of:

𝑦[𝑛] − 0.6𝑦[𝑛 − 1] − 0.16𝑦[𝑛 − 2] = 5𝑥 [𝑛]

Solution: letting the input 𝑥 [𝑛] = 𝛿[𝑛] and the output 𝑦[𝑛] = ℎ[𝑛], we have

ℎ[𝑛] = 0.6ℎ[𝑛 − 1] + 0.16ℎ[𝑛 − 2] + 5𝛿[𝑛]

let ℎ[−1] = ℎ[−2] = 0; setting 𝑛 = 0 in this equation yields

ℎ[0] = 0.6(0) + 0.16(0) + 5(1) = 5

setting 𝑛 = 1 in the same equation and using ℎ[0] = 5, we obtain

ℎ[1] = 0.6(5) + 0.16(0) + 5(0) = 3

continuing this way, we can determine any number of terms of ℎ[𝑛]
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Closed form expression

the impulse response to system (6.3) with 𝑎𝑁 ≠ 0 can be expressed as

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝑦𝑐 [𝑛]𝑢[𝑛]

■ 𝐴0 = 𝑏𝑁/𝑎𝑁 (assuming 𝑎𝑁 ≠ 0)

■ 𝑦𝑐 [𝑛] is a linear combination of the characteristic modes
– for unrepeated roots 𝑦𝑐 [𝑛] = 𝑐1𝛾𝑛1 + · · · + 𝑐𝑁 𝛾𝑛𝑁
– repeated roots has form as in page 6.6

■ to find the 𝑁 unknowns 𝑐1, . . . , 𝑐𝑁 , we need to compute 𝑁 values
ℎ[0], ℎ[1], ℎ[2], . . . , ℎ[𝑁 − 1] iteratively

unit-impulse response 6.17



Finding 𝐴0: substituting the above into (6.3), we obtain

𝑄 [𝐸] (𝐴0𝛿[𝑛] + 𝑦𝑐 [𝑛]𝑢[𝑛]) = 𝑃[𝐸]𝛿[𝑛]

since 𝑦𝑐 [𝑛] is made up of characteristic modes, 𝑄 [𝐸]𝑦𝑐 [𝑛] = 0; hence

𝐴0 (𝛿[𝑛 + 𝑁] + 𝑎1𝛿[𝑛 + 𝑁 − 1] + · · · + 𝑎𝑁 𝛿[𝑛]) = 𝑏0𝛿[𝑛 + 𝑁] + · · · + 𝑏𝑁 𝛿[𝑛]

setting 𝑛 = 0 and using 𝛿[𝑚] = 0 for all 𝑚 ≠ 0, and 𝛿[0] = 1, we obtain

𝐴0𝑎𝑁 = 𝑏𝑁 =⇒ 𝐴0 =
𝑏𝑁

𝑎𝑁
(assuming 𝑎𝑁 ≠ 0)
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Example 6.5

determine the unit impulse response ℎ[𝑛] for a system specified by the equation

𝑦[𝑛] − 0.6𝑦[𝑛 − 1] − 0.16𝑦[𝑛 − 2] = 5𝑥 [𝑛]

Solution: this equation can be expressed in the advance form as

𝑦[𝑛 + 2] − 0.6𝑦[𝑛 + 1] − 0.16𝑦[𝑛] = 5𝑥 [𝑛 + 2]

or in advance operator form as(
𝐸2 − 0.6𝐸 − 0.16

)
𝑦[𝑛] = 5𝐸2𝑥 [𝑛]

the characteristic polynomial is

𝛾2 − 0.6𝛾 − 0.16 = (𝛾 + 0.2) (𝛾 − 0.8)

the characteristic modes are (−0.2)𝑛 and (0.8)𝑛; therefore,

𝑦𝑐 [𝑛] = 𝑐1 (−0.2)𝑛 + 𝑐2 (0.8)𝑛
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by inspection, we see that 𝑎𝑁 = −0.16 and 𝑏𝑁 = 0; hence

ℎ[𝑛] = [𝑐1 (−0.2)𝑛 + 𝑐2 (0.8)𝑛] 𝑢[𝑛]

to determine 𝑐1 and 𝑐2, we need to find two values of ℎ[𝑛] iteratively; from the
example in page 6.16, we know that ℎ[0] = 5 and ℎ[1] = 3; hence

ℎ[0] = 5 = 𝑐1 + 𝑐2
ℎ[1] = 3 = −0.2𝑐1 + 0.8𝑐2

}
=⇒ 𝑐1 = 1

𝑐2 = 4

therefore,

ℎ[𝑛] = [(−0.2)𝑛 + 4(0.8)𝑛] 𝑢[𝑛]
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Other cases

when 𝑎𝑁 = 0 and 𝑎𝑁−1 ≠ 0, then

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝐴1𝛿[𝑛 − 1] + 𝑦𝑐 [𝑛]𝑢[𝑛]

■ 𝑦𝑐 [𝑛] contains the characteristic terms of 𝑄 [𝛾] = 𝑄 [𝛾]/𝛾
■ to find the unknowns 𝐴0, 𝐴1, 𝑐1, . . . , 𝑐𝑁 , we need to compute 𝑁 + 1 values
ℎ[0], ℎ[1], ℎ[2], . . . , ℎ[𝑁] iteratively

when 𝑎𝑁 = 𝑎𝑁−1 = 0 and 𝑎𝑁−2 ≠ 0, then

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝐴1𝛿[𝑛 − 1] + 𝐴2𝛿[𝑛 − 2] + 𝑦𝑐 [𝑛]𝑢[𝑛]

■ 𝑦𝑐 [𝑛] contains the characteristic terms of 𝑄 [𝛾] = 𝑄 [𝛾]/𝛾2

■ to find the unknowns 𝐴0, 𝐴1, 𝐴2, 𝑐1, . . . , 𝑐𝑁 , we need to compute 𝑁 + 1
values ℎ[0], ℎ[1], ℎ[2], . . . , ℎ[𝑁] iteratively

...etc
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Example 6.6

determine the impulse response ℎ[𝑛] of a system described by the equation

(𝐸3 + 𝐸2)𝑦[𝑛] = 𝑥 [𝑛]

Solution: in this case, 𝑎𝑁 = 𝑎𝑁−1 = 0, and the characteristic roots: one at −1
and two at 0; only the nonzero characteristic root shows up in 𝑦𝑐 [𝑛], so

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝐴1𝛿[𝑛 − 1] + 𝐴2𝛿[𝑛 − 2] + 𝑐1 (−1)𝑛𝑢[𝑛]

to determine the coefficients 𝐴0, 𝐴1, 𝐴2, and 𝑐1, we require 𝑁 + 1 = 4 values of
ℎ[𝑛] (𝑛 ≥ 0), which we obtain iteratively using Matlab

n = (-3:3); delta = (n==0); h = zeros(size(n));

for ind = find(n>=0),

h(ind) = -h(ind-1)+delta(ind-3);

end

h(n>=0)

[output: ans = 0 0 0 1] using these values to solve for th constants, we get

ℎ[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] − (−1)𝑛𝑢[𝑛]
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Solving LTI difference system in MATLAB

we can use the filter command in MATLAB to solve constant coefficient
difference equations:

𝑁∑︁
𝑘=0

𝑎𝑘𝑦[𝑛 − 𝑘] =
𝑁∑︁
𝑘=0

𝑏𝑘𝑥 [𝑛 − 𝑘]

Example: 𝑦[𝑛] − 0.6𝑦[𝑛 − 1] − 0.16𝑦[𝑛 − 2] = 5𝑥 [𝑛] with 𝑥 [𝑛] = 𝛿[𝑛]
n = (0:19); delta = @(n) 1.0.*(n==0);

a = [1 -0.6 -0.16]; b = [5 0 0];

h = filter(b,a,delta(n));

clf; stem(n,h,’k’); xlabel(’n’); ylabel(’h[n]’);
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Exercises

■ find the unit impulse response ℎ[𝑛] of the LTID systems
(a) 𝑦[𝑛 + 1] − 𝑦[𝑛] = 𝑥 [𝑛]
(b) 𝑦[𝑛] − 5𝑦[𝑛 − 1] + 6𝑦[𝑛 − 2] = 8𝑥 [𝑛 − 1] − 19𝑥 [𝑛 − 2]
(c) 𝑦[𝑛 + 2] − 4𝑦[𝑛 + 1] + 4𝑦[𝑛] = 2𝑥 [𝑛 + 2] − 2𝑥 [𝑛 + 1]

Answers:
(a) ℎ[𝑛] = 𝑢[𝑛 − 1]
(b) ℎ[𝑛] = − 19

6 𝛿[𝑛] +
[
3
2 (2)

𝑛 + 5
3 (3)

𝑛
]
𝑢[𝑛]

(c) ℎ[𝑛] = (2 + 𝑛)2𝑛𝑢[𝑛]

■ Nonrecursive impulse response. the find the iupulse response of
𝑦[𝑛] = 2𝑥 [𝑛] − 2𝑥 [𝑛 − 1]
Answer: ℎ[𝑛] = 2𝛿[𝑛] − 2𝛿[𝑛 − 1]
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Outline

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability



Derivation of zero-state response

we can express any arbitrary input 𝑥 [𝑛] as a sum of impulse components:

𝑥 [𝑛] = 𝑥 [0]𝛿[𝑛] + 𝑥 [1]𝛿[𝑛 − 1] + 𝑥 [2]𝛿[𝑛 − 2] + · · ·
+ 𝑥 [−1]𝛿[𝑛 + 1] + 𝑥 [−2]𝛿[𝑛 + 2] + · · ·

=

∞∑︁
𝑚=−∞

𝑥 [𝑚]𝛿[𝑛 − 𝑚]

let ℎ[𝑛] be the system response to impulse input 𝛿[𝑛] (𝛿[𝑛] =⇒ ℎ[𝑛]), then due
to linearity and time invariance

𝑥 [𝑛] =
∞∑︁

𝑚=−∞
𝑥 [𝑚]𝛿[𝑛 − 𝑚] =⇒

∞∑︁
𝑚=−∞

𝑥 [𝑚]ℎ[𝑛 − 𝑚]︸                    ︷︷                    ︸
𝑦 [𝑛]

the right-hand side is the system response 𝑦[𝑛] to input 𝑥 [𝑛]
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Zero-state response and convolution

the zero-state response is:

𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛 − 𝑚] =
∞∑︁

𝑚=−∞
𝑥 [𝑚]ℎ[𝑛 − 𝑚]

■ the summation is known as the convolution sum of 𝑥 [𝑛] and ℎ[𝑛]
■ for causal input and system (ℎ[𝑘] = 𝑥 [𝑘] = 0 for 𝑘 < 0), we have

𝑦[𝑛] =
𝑛∑︁

𝑚=0

𝑥 [𝑚]ℎ[𝑛 − 𝑚]

■ we use ∗ to denote the convolution sum two signals 𝑥1 [𝑛] and 𝑥2 [𝑛]:
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Example 6.7

determine 𝑐[𝑛] = 𝑥 [𝑛] ∗ 𝑔[𝑛] analytically for

𝑥 [𝑛] = (0.8)𝑛𝑢[𝑛] and 𝑔[𝑛] = (0.3)𝑛𝑢[𝑛]

Solution: note that 𝑥 [𝑚] = (0.8)𝑚𝑢[𝑚] and 𝑔[𝑛 − 𝑚] = (0.3)𝑛−𝑚𝑢[𝑛 − 𝑚]
both 𝑥 [𝑛] and 𝑔[𝑛] are causal, thus

𝑐[𝑛] =
𝑛∑︁

𝑚=0

𝑥 [𝑚]𝑔[𝑛 − 𝑚] =
𝑛∑︁

𝑚=0

(0.8)𝑚𝑢[𝑚] (0.3)𝑛−𝑚𝑢[𝑛 − 𝑚]

=

{ ∑𝑛
𝑚=0 (0.8)𝑚 (0.3)𝑛−𝑚 𝑛 ≥ 0

0 𝑛 < 0

or

𝑐[𝑛] = (0.3)𝑛
𝑛∑︁

𝑚=0

(0.8/0.3)𝑚𝑢[𝑛] = (0.3)𝑛 1 − (0.8/0.3)𝑛+1
1 − (0.8/0.3) 𝑢[𝑛]

= 2
[
(0.8)𝑛+1 − (0.3)𝑛+1

]
𝑢[𝑛]
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Properties of convolution sum

Commutative

𝑥1 [𝑛] ∗ 𝑥2 [𝑛] = 𝑥2 [𝑛] ∗ 𝑥1 [𝑛]

Distributive

𝑥1 [𝑛] ∗ (𝑥2 [𝑛] + 𝑥3 [𝑛]) = 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] + 𝑥1 [𝑛] ∗ 𝑥3 [𝑛]

Associative

𝑥1 [𝑛] ∗ (𝑥2 [𝑛] ∗ 𝑥3 [𝑛]) = (𝑥1 [𝑛] ∗ 𝑥2 [𝑛]) ∗ 𝑥3 [𝑛]

Shifting: if 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] = 𝑦[𝑛] then

𝑥1 [𝑛 − 𝑚] ∗ 𝑥2 [𝑛 − 𝑝] = 𝑦[𝑛 − 𝑚 − 𝑝]

Convolution with an Impulse

𝑥 [𝑛] ∗ 𝐴𝛿[𝑛 − 𝑛0] = 𝐴𝑥 [𝑛 − 𝑛0]

zero-state response and convolution 6.28



Differencing: if 𝑐[𝑛] = 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] then

𝑐[𝑛] − 𝑐[𝑛 − 1] = 𝑥1 [𝑛] ∗ (𝑥2 [𝑛] − 𝑥2 [𝑛 − 1])

Summation: if 𝑐[𝑛] = 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] then

sum of 𝑐 = (sum of 𝑥1) × (sum of 𝑥2)

Width and length properties: the width of a signal is the number of its elements
(length) minus one

■ if 𝑥1 [𝑛] and 𝑥2 [𝑛] have finite widths of𝑊1 and𝑊2, respectively, then the
width of 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] is𝑊1 +𝑊2

■ if 𝑥1 [𝑛] and 𝑥2 [𝑛] have finite lengths of 𝐿1 and 𝐿2 elements, then the length
of 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] is 𝐿1 + 𝐿2 − 1 elements
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Example 6.8 (convolution from table)

■ many convolution sums can be determined from already determined signal
pairs (convolution table)

■ we can combine these pairs with convolution properties to find more
complicated convolutions

Example: use the table to find the following convolutions

(a) 𝑦𝑎 [𝑛] = (0.8)𝑛𝑢[𝑛] ∗ 𝑢[𝑛]
(b) 𝑦𝑏 [𝑛] = (0.8)𝑛𝑢[𝑛 − 1] ∗ 𝑢[𝑛 + 3]
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Solution:

(a) direct application of pair 4 from table gives

𝑦𝑎 [𝑛] = (0.8)𝑛𝑢[𝑛] ∗ 𝑢[𝑛] = 0.8𝑛+1 − 1

0.8 − 1
𝑢[𝑛] = 5(1 − (0.8)𝑛+1)𝑢[𝑛]

(b) we have

𝑦𝑏 [𝑛] = (0.8)𝑛𝑢[𝑛 − 1] ∗ 𝑢[𝑛 + 3] = 0.8(0.8)𝑛−1𝑢[𝑛 − 1] ∗ 𝑢[𝑛 + 3]

hence from shifting property

𝑦𝑏 [𝑛] = 0.8𝑦𝑎 [𝑛 + 2] = 4(1 − (0.8)𝑛+3)𝑢[𝑛 + 2]
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Graphical procedure

𝑐[𝑛] = 𝑥 [𝑛] ∗ 𝑔[𝑛] =
∞∑︁

𝑚=−∞
𝑥 [𝑚]𝑔[𝑛 − 𝑚]

the convolution operation can be performed as follows:

1. we first plot 𝑥 [𝑚] and 𝑔[𝑛 − 𝑚] as functions of 𝑚

2. invert 𝑔[𝑚] about the vertical axis (𝑚 = 0) to obtain 𝑔[−𝑚]
3. shift 𝑔[−𝑚] by 𝑛 units to obtain 𝑔[𝑛 − 𝑚]

– for 𝑛 > 0, the shift is to the right (delay)
– for 𝑛 < 0, the shift is to the left (advance)

4. multiply 𝑥 [𝑚] and 𝑔[𝑛 − 𝑚] and add all the products to obtain 𝑐[𝑛]
(the procedure is repeated for each value of 𝑛 over the range −∞ to ∞)
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Example 6.9

find 𝑐[𝑛] = 𝑥 [𝑛] ∗ 𝑔[𝑛], where

𝑥 [𝑛] = (0.8)𝑛𝑢[𝑛] and 𝑔[𝑛] = (0.3)𝑛𝑢[𝑛]
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Solution: note that

𝑥 [𝑚] = (0.8)𝑚 and 𝑔[𝑛 − 𝑚] = (0.3)𝑛−𝑚
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■ for 𝑛 < 0, there is no overlap, so that 𝑐[𝑛] = 0 for 𝑛 < 0
■ for 𝑛 ≥ 0, the two functions overlap over the interval 0 ≤ 𝑚 ≤ 𝑛:

𝑐[𝑛] =
𝑛∑︁

𝑚=0

𝑥 [𝑚]𝑔[𝑛 − 𝑚] =
𝑛∑︁

𝑚=0

(0.8)𝑚 (0.3)𝑛−𝑚 = (0.3)𝑛
𝑛∑︁

𝑚=0

( 0.80.3 )
𝑚

= 2[(0.8)𝑛+1 − (0.3)𝑛+1] 𝑛 ≥ 0

combining pieces, we see that

𝑐[𝑛] = 2[(0.8)𝑛+1 − (0.3)𝑛+1]𝑢[𝑛]
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Example 6.10: Sliding-tape method

use the sliding-tape method to find 𝑥 [𝑛] ∗ 𝑔[𝑛] for the signals shown below
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Solution: in this procedure we represent the sequences 𝑥 [𝑚] and 𝑔[𝑚] as
tapes; we then get the 𝑔[−𝑚] tape by inverting the 𝑔[𝑚] tape about the origin
(𝑚 = 0)

rotate the 𝑔 tape about the vertical axis

𝑥 tape

𝑔 tape
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we now shift the inverted tape by 𝑛 slots, multiply values on two tapes in adjacent
slots, and add all the products to find 𝑐[𝑛]
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𝑐[0] = (−2 × 1) + (−1 × 1) + (0 × 1) = −3
𝑐[1] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) = −2
𝑐[2] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) = 0

𝑐[3] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) = 3

𝑐[4] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) = 7

𝑐[5] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) = 7

𝑐[𝑛] = 7 𝑛 ≥ 4

similarly, we compute 𝑐[𝑛] for negative 𝑛 by sliding the tape backward:

𝑐[−1] = (−2 × 1) + (−1 × 1) = −3
𝑐[−2] = (−2 × 1) = −2

𝑐[−3] = 0

𝑐[𝑛] = 0 𝑛 ≤ −4
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Interconnected systems

Parallel systems

Cascade systems

because ℎ1 [𝑛] ∗ ℎ2 [𝑛] = ℎ2 [𝑛] ∗ ℎ1 [𝑛], linear systems commute; hence, we
can interchange the order of cascade systems without affecting the final result
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Example:

■ if 𝑥 [𝑛] =⇒ 𝑦[𝑛], then
∑𝑛

𝑘=−∞ 𝑥 [𝑘] =⇒
∑𝑛

𝑘=−∞ 𝑦[𝑘]

■ if 𝑥 [𝑛] = 𝛿[𝑛] then 𝑦[𝑛] = ℎ[𝑛] and
∑𝑛

𝑘=−∞ 𝑥 [𝑘] = 𝑢[𝑛]

Unit-step response: the unit step response of an LTID system with impulse
response ℎ[𝑛] is

𝑔[𝑛] =
𝑛∑︁

𝑘=−∞
ℎ[𝑘]

it also holds that

ℎ[𝑛] = 𝑔[𝑛] − 𝑔[𝑛 − 1]
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Inverse systems

the cascade of a system ℎ[𝑛] with its inverse ℎ𝑖 [𝑛] is an identity system

ℎ[𝑛] ∗ ℎ𝑖 [𝑛] = 𝛿[𝑛]

Example: we can show that the accumulator system 𝑦[𝑛] =
∑𝑛

𝑘=−∞ 𝑥 [𝑘] and
the backward difference system 𝑦[𝑛] = 𝑥 [𝑛] − 𝑥 [𝑛 − 1] are the inverse of each
other

to see this, note that the impulse response of the accumulator and backward
difference systems are is

ℎacc [𝑛] =
𝑛∑︁

𝑘=−∞
𝛿[𝑘] = 𝑢[𝑛] and ℎbdf [𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1]

we can verify that

ℎacc ∗ ℎbdf = 𝑢[𝑛] ∗ {𝛿[𝑛] − 𝛿[𝑛 − 1]} = 𝑢[𝑛] − 𝑢[𝑛 − 1] = 𝛿[𝑛]
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Example 6.11 (total response)

total response of LTID system = ZIR + 𝑥 [𝑛] ∗ ℎ[𝑛]︸        ︷︷        ︸
ZSR

find the output of the system described by the equation

𝑦[𝑛 + 2] − 0.6𝑦[𝑛 + 1] − 0.16𝑦[𝑛] = 5𝑥 [𝑛 + 2]

with initial conditions 𝑦[−1] = 0, 𝑦[−2] = 25/4 and input 𝑥 [𝑛] = (4)−𝑛𝑢[𝑛]

Solution: from slides 6.7 and 6.19 , we know that zero-input response and
impulse response are

𝑦0 [𝑛] = 0.2(−0.2)𝑛 + 0.8(0.8)𝑛

ℎ[𝑛] = [(−0.2)𝑛 + 4(0.8)𝑛] 𝑢[𝑛]
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the zero-state response is:

𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛]
= (0.25)𝑛𝑢[𝑛] ∗

[
(−0.2)𝑛𝑢[𝑛] + 4(0.8)𝑛𝑢[𝑛]

]
= (0.25)𝑛𝑢[𝑛] ∗ (−0.2)𝑛𝑢[𝑛] + (0.25)𝑛𝑢[𝑛] ∗ 4(0.8)𝑛𝑢[𝑛]

using pair 4 of convolution table, we get

𝑦[𝑛] =
[
(0.25)𝑛+1 − (−0.2)𝑛+1

0.25 − (−0.2) + 4
(0.25)𝑛+1 − (0.8)𝑛+1

0.25 − 0.8

]
𝑢[𝑛]

=
(
2.22

[
(0.25)𝑛+1 − (−0.2)𝑛+1

]
− 7.27

[
(0.25)𝑛+1 − (0.8)𝑛+1

] )
𝑢[𝑛]

= [−1.26(0.25)𝑛 + 0.444(−0.2)𝑛 + 5.81(0.8)𝑛] 𝑢[𝑛]

therefore, the total response for 𝑛 ≥ 0 is

total response = 0.2(−0.2)𝑛 + 0.8(0.8)𝑛︸                         ︷︷                         ︸
ZIR

+ 0.444(−0.2)𝑛 + 5.81(0.8)𝑛 − 1.26(4)−𝑛︸                                                 ︷︷                                                 ︸
ZSR
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Natural and forced response

■ when all the characteristic mode terms in the total response are lumped
together, the resulting component is the natural response

■ the remaining part of the total response that is made up of noncharacteristic
modes is the forced response

Example: the characteristic modes of the previous system are (−0.2)𝑛 and
(0.8)𝑛; hence

total response = 0.644(−0.2)𝑛 + 6.61(0.8)𝑛︸                             ︷︷                             ︸
natural response

−1.26(4)−𝑛︸        ︷︷        ︸
forced response

𝑛 ≥ 0

just like differential equations, the classical solution to difference equations
includes the natural and forced responses
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Finding the zero-state response using MATLAB

use the MATLAB filter command to compute and sketch the zero-state
response for the system described by (𝐸2 + 0.5𝐸 − 1)𝑦[𝑛] = (2𝐸2 + 6𝐸)𝑥 [𝑛]
with input 𝑥 [𝑛] = 4−𝑛𝑢[𝑛]
n = (0:11); x = @(n) 4.^(-n).*(n>=0);

a = [1 0.5 -1]; b = [2 6 0]; y = filter(b,a,x(n));

clf; stem(n,y,’k’); xlabel(’n’); ylabel(’y[n]’);

axis([-0.5 11.5 -20 25]);
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although the input is bounded and quickly decays to zero, the system itself is
unstable and an unbounded output results.
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Discrete-time convolution using MATLAB

x = [0 1 2 3 2 1]; g = [1 1 1 1 1 1];

n = (0:1:length(x)+length(g)-2);

c = conv(x,g);

clf; stem(n,c,’k’); xlabel(’n’); ylabel(’c[n]’);

axis([-0.5 10.5 0 10]);

(the starting point of the result is determined by simply add the starting points of each
signal being convolved: in our case 0 + 0 = 0)
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Exercises

■ use both the convolution sum definition and table to show that
(0.8)𝑛𝑢[𝑛] ∗ 𝑢[𝑛] = 5[1 − (0.8)𝑛+1]𝑢[𝑛]

■ use convolution sum table and properties to find
(a) 𝑛 3−𝑛𝑢[𝑛] ∗ (0.2)𝑛𝑢[𝑛]
(b) 𝑒−𝑛𝑢[𝑛] ∗ 2−𝑛𝑢[𝑛]
(c) 𝑗𝛿[𝑛 + 1] ∗ 2−𝑛𝑢[𝑛]

Answers:
(a) 15

4 [(0.2)𝑛 − (1 − 2
3𝑛)3

−𝑛]𝑢[𝑛]; (b) 2
2−𝑒 [𝑒

−𝑛 − 𝑒
22

−𝑛]𝑢[𝑛]

■ consider an LTID system that has an impulse response ℎ[𝑛] = 2−𝑛𝑢[𝑛];
using the input 𝑥 [𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 10], determine and sketch the zero-state
response of this system over −10 ≤ 𝑛 ≤ 20

■ find the output (response) 𝑦[𝑛] of the system described in example on page
6.43 if the input is modified to be 𝑥 [𝑛] = 𝛿[𝑛] + 4−𝑛𝑢[𝑛]
Answer: 𝑦[𝑛] = [−1.26(4)−𝑛 + 1.444(−0.2)𝑛 + 9.81(0.8)𝑛]𝑢[𝑛]
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Exercises

■ find the convolution (0.8)𝑛𝑢[𝑛−1] ∗𝑢[𝑛+3] graphically and sketch the result
[Answer: 4(1 − (0.8)𝑛+3)𝑢[𝑛 + 2]]

■ use the sliding-tape technique to find 𝑐[𝑛] = 𝑥 [𝑛] ∗ 𝑔[𝑛]; also, verify the
width property of convolution

Answer:

■ use the sliding-tape procedure to determine and plot 𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛] for
𝑥 [𝑛] = (3 − |𝑛|) (𝑢[𝑛 + 3] − 𝑢[𝑛 − 4]) and ℎ[𝑛] = 𝑢[−𝑛 + 4] − 𝑢[−𝑛 − 2];
verify the convolution width property
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Outline

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability



BIBO stability

an LTID system is BIBO stable if every bounded input results in a bounded
output; or if there exists a 𝐾 such that

∞∑︁
𝑛=−∞

|ℎ[𝑛] | < 𝐾 < ∞

■ absolutely summable ℎ[𝑛]
■ otherwise it is unstable

proof: note that

|𝑦[𝑛] | =
����� ∞∑︁
𝑚=−∞

ℎ[𝑚]𝑥 [𝑛 − 𝑚]
����� ≤ ∞∑︁

𝑚=−∞
|ℎ[𝑚] | |𝑥 [𝑛 − 𝑚] |

if 𝑥 [𝑛] is bounded, then |𝑥 [𝑛 − 𝑚] | < 𝐾0 < ∞, and

|𝑦[𝑛] | ≤ 𝐾0

∞∑︁
𝑚=−∞

|ℎ[𝑚] |

clearly the output is bounded if
∑∞

𝑚=−∞ |ℎ[𝑚] | is bounded
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Internal stability

for LTID systems, internal stability, called asymptotical stability or stability in the
sense of Lyapunov (also the zero-input stability), is defined in terms of the
zero-input response of a system

an LTID system is

1. asymptotically stable if, and only if, all the characteristic roots are inside the
unit circle (the roots may be simple or repeated)

2. marginally stable if and only if there are no roots outside the unit circle and
there are some unrepeated roots on the unit circle

3. unstable if, and only if, either one or both of the following conditions exist:
(i) at least one root is outside the unit circle
(ii) there are repeated roots on the unit circle
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marginally stable

stable

unstable

if |𝛾 | < 1, then 𝛾𝑛 → 0 as 𝑛→ ∞
if |𝛾 | > 1, then 𝛾𝑛 → ∞ as 𝑛→ ∞
if |𝛾 | = 1, then |𝛾 |𝑛 = 1 for all 𝑛

Relation with BIBO stability

■ an asymptotically stable system is BIBO-stable

■ the converse is not necessarily true; BIBO (external) stability cannot ensure
internal (asymptotic) stability

■ for a difference LTI system, marginal stability or asymptotic instability implies
that the system is BIBO-unstable
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Example 6.12

an LTID systems consists of two subsystems 𝑆1 and 𝑆2 in cascade

the impulse response of these systems are

ℎ1 [𝑛] = 4𝛿[𝑛] − 3(0.5)𝑛𝑢[𝑛] and ℎ2 [𝑛] = 2𝑛𝑢[𝑛]

investigate the BIBO and asymptotic stability of the composite system
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Solution: the composite system impulse response ℎ[𝑛] is given by

ℎ[𝑛] = ℎ1 [𝑛] ∗ ℎ2 [𝑛] = ℎ2 [𝑛] ∗ ℎ1 [𝑛] = 2𝑛𝑢[𝑛] ∗ (4𝛿[𝑛] − 3(0.5)𝑛𝑢[𝑛])

= 4(2)𝑛𝑢[𝑛] − 3

[
2𝑛+1 − (0.5)𝑛+1

2 − 0.5

]
𝑢[𝑛]

= (0.5)𝑛𝑢[𝑛]

■ the system is BIBO-stable because its impulse response (0.5)𝑛𝑢[𝑛] is
absolutely summable

■ the system 𝑆2 is asymptotically unstable because its characteristic root, 2, lies
outside the unit circle; this system will eventually burn out (or saturate)
because of the unbounded characteristic response

■ this example shows that BIBO stability does not necessarily ensure
asymptotic stability
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Example 6.13

determine the internal and external stability of systems specified by the following
equations; in each case plot the characteristic roots in the complex plane

(a) 𝑦[𝑛 + 2] + 2.5𝑦[𝑛 + 1] + 𝑦[𝑛] = 𝑥 [𝑛 + 1] − 2𝑥 [𝑛]
(b) 𝑦[𝑛] − 𝑦[𝑛 − 1] + 0.21𝑦[𝑛 − 2] = 2𝑥 [𝑛 − 1] + 3𝑥 [𝑛 − 2]
(c) 𝑦[𝑛 + 3] + 2𝑦[𝑛 + 2] + 3

2 𝑦[𝑛 + 1] + 1
2 𝑦[𝑛] = 𝑥 [𝑛 + 1]

(d)
(
𝐸2 − 𝐸 + 1

)2
𝑦[𝑛] = (3𝐸 + 1)𝑥 [𝑛]

Solution:

(a) the characteristic polynomial is 𝛾2 + 2.5𝛾 + 1 = (𝛾 + 0.5) (𝛾 + 2) and the
characteristic roots are −0.5 and −2; −2 lies outside the unit circle), so the
system is BIBO-unstable and also asymptotically unstable

(b) the characteristic polynomial is 𝛾2 − 𝛾 + 0.21 = (𝛾 − 0.3) (𝛾 − 0.7) and the
characteristic roots are 0.3 and 0.7, both of which lie inside the unit circle; the
system is BIBO-stable and asymptotically stable

(c) the characteristic polynomial is
𝛾3+2𝛾2+ 3

2𝛾+
1
2 = (𝛾+1)

(
𝛾2 + 𝛾 + 1

2

)
= (𝛾+1) (𝛾+0.5− 𝑗0.5) (𝛾+0.5+ 𝑗0.5)
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the characteristic roots are −1,−0.5 ± 𝑗0.5; one of the characteristic roots is
on the unit circle and the remaining two roots are inside the unit circle; the
system is BIBO-unstable but marginally stable

(d) the characteristic polynomial is(
𝛾2 − 𝛾 + 1

)2
=

(
𝛾 − 1

2 − 𝑗
√
3
2

)2 (
𝛾 − 1

2 + 𝑗
√
3
2

)2
the characteristic roots are (1/2) ± 𝑗 (

√
3/2) = 1𝑒± 𝑗 (𝜋/3) repeated twice, and

they lie on the unit circle; the system is BIBO-unstable and asymptotically
unstable
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Exercise

determine BIBO (external) and asymptotic (internal) stability of each system

(a) (𝐸 + 1)
(
𝐸2 + 6𝐸 + 25

)
𝑦[𝑛] = 3𝐸𝑥 [𝑛]

(b) (𝐸2 − 2𝐸 − 1) (𝐸 + 0.5)𝑦[𝑛] =
(
𝐸2 + 2𝐸 + 3

)
𝑥 [𝑛]

Answers: both systems are BIBO-and asymptotically unstable

system stability 6.58



References

■ B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 3.

■ M. J. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB,
McGraw Hill, chapter 5 (5.3).

references and further readings 6.59


	zero-input response
	unit-impulse response
	zero-state response and convolution
	system stability
	references and further readings

