## 2. Continuous-time systems

- CT systems
- classifications of CT systems
- modeling of basic systems
- introduction to state-space modeling


## System

a system is an entity that processes input signals to provide output signals

- a system that operates on CT-signals is a continuous-time systems
- to excite a system means to apply energy that causes it to respond
- a system can have multiple inputs and multiple outputs (MIMO)



## Examples

- amplifier: $y(t)=a x(t)$
- integrator: $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$
- RC-circuit

the input current $x(t)$ and output voltage $y(t)$ are related by:

$$
y(t)=R x(t)+v_{C}\left(t_{0}\right)+\frac{1}{C} \int_{t_{0}}^{t} x(\tau) d \tau, \quad t \geq t_{0}
$$

## System analysis and design

the study of systems consists of three major areas:

- system modeling: the mathematical equations relating the outputs to the inputs are called the system model
- system analysis: how to determine the system outputs for the given inputs and a given mathematical model of the system
- system design (synthesis): how to construct a system that will produce a desired set of outputs for the given inputs


## Block diagrams

in system analysis it is common and useful to represent systems by block diagrams

## Single-input single-output



- input $x(t)$ is operated on by the operator $H$ to produce the signal at the output $y(t)$
- the operator $H$ could perform just about any operation imaginable


## Interconnected systems

a system is often described and analyzed as an assembly of components

- a component is a smaller, simpler system
- to a circuit designer, components are resistors, capacitors, inductors, operational amplifiers and so on, and systems are power amplifiers, A/D converters, modulators, filters and so forth
- to an automobile designer components are wheels, engines, bumpers, lights, seats and the system is the automobile

- by knowing the mathematical model of the components, an engineer can predict the behavior (output) of the system


## Common block diagram operations

## Amplifier (scalar multiplication)



Summation (addition)

$y$

(b)

(c)

Integrator


## Example 2.1



$$
\frac{d y^{2}}{d t^{2}}=a\left(x(t)-\left[b \frac{d y}{d t}+c y(t)\right]\right)
$$

or

$$
\frac{d y^{2}}{d t^{2}}+(a b) \frac{d y}{d t}+(a c) y(t)=a x(t)
$$

## Outline

- CT systems
- classifications of CT systems
- modeling of basic systems
- introduction to state-space modeling


## Linear systems

a system $H$ is

- homogeneous if $x \rightarrow y$, then $a x \rightarrow a y$ for any number $a$
- additive if $x_{1} \rightarrow y_{1}$, and $x_{2} \rightarrow y_{2}$, then $x_{1}+x_{2} \rightarrow y_{1}+y_{2}$

Linear systems: a system is linear if it is both homogeneous and additive

$$
\begin{aligned}
& x_{1} \longrightarrow y_{1} \\
& x_{2} \longrightarrow y_{2}
\end{aligned}
$$

then for any numbers $a_{1}, a_{2}$

$$
a_{1} x_{1}+a_{2} x_{2} \longrightarrow a_{1} y_{1}+a_{2} y_{2}
$$

the above is called the superposition property

## Example 2.2

determine whether the following systems are linear or nonlinear
(a) $\frac{d y(t)}{d t}+3 y(t)=x(t)$
(b) $y(t) \frac{d y(t)}{d t}+3 y(t)=x(t)$
(c) $y(t)=e^{x(t)}$

## Solution:

(a) let $y_{1}(t)$ and $y_{2}(t)$ to be the outputs for inputs $x_{1}(t)$ and $x_{2}(t)$; then,

$$
\frac{d y_{1}(t)}{d t}+3 y_{1}(t)=x_{1}(t) \quad \frac{d y_{2}(t)}{d t}+3 y_{2}(t)=x_{2}(t)
$$

multiplying the first equation by $a_{1}$ and the second by $a_{2}$ and adding, gives

$$
\frac{d}{d t}\left[a_{1} y_{1}(t)+a_{2} y_{2}(t)\right]+3\left[a_{1} y_{1}(t)+a_{2} y_{2}(t)\right]=a_{1} x_{1}(t)+a_{2} x_{2}(t),
$$

which is the system equation with

$$
x(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t), \quad y(t)=a_{1} y_{1}(t)+a_{2} y_{2}(t)
$$

hence, superposition is satisfied and the system is linear
(b) if $x(t) \rightarrow y(t)$, then we have

$$
y(t) \frac{d y(t)}{d t}+3 y(t)=x(t)
$$

multiplying by $a$, we have

$$
a y(t) \frac{d y(t)}{d t}+3 a y(t)=a x(t)
$$

which is not equal to

$$
a y(t) \frac{d[a y(t)]}{d t}+3 a y(t)=a x(t)
$$

hence, the system is nonlinear
(c) for input $a x(t)$, we have $y(t)=e^{a x(t)} \neq a y(t)$

## Total response of a linear system

## Zero-input response (ZIR)

- ZIR is the output that results only from initial conditions at $t=0$
- with zero input $x(t)=0$ for $t \geq 0$


## Zero-state response (ZSR)

- ZSR is the output that results from input $x(t)$ for $t \geq 0$
- with zero initial conditions
- when all the initial conditions are zero, the system is said to be in zero state


## Decomposition property of linear systems:

total response $=$ zero-input response + zero-state response

Example: for the circuit in slide 2.3 (with $t_{0}=0$ ):

we have

$$
y(t)==\underbrace{v_{C}(0)}_{\mathrm{ZIR}}+\underbrace{R x(t)+\frac{1}{C} \int_{t_{0}}^{t} x(\tau) d \tau}_{\mathrm{ZSR}}, \quad t \geq 0
$$

## Linearity implication

if we can write $x(t)$ as

$$
x(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t)+\cdots+a_{m} x_{m}(t)
$$

then if the system is linear, the output is

$$
y(t)=a_{1} y_{1}(t)+a_{2} y_{2}(t)+\cdots+a_{m} y_{m}(t)
$$

- $y_{k}(t)$ is the zero-state response to input $x_{k}(t)$
- if $x_{k}(t)$ are simple, then we can find $y(t)$ by finding the responses $y_{k}(t)$ to the simpler components $x_{k}(t)$


## Linearity implication

any signal can be approximated by a sum of rectangular pulses (impulses) or step-functions

if we know the system response to a unit impulse or unit step input, we can compute the system response to any arbitrary input

## Time-invariant systems

a system is time invariant if for input-output $x(t) \rightarrow y(t)$, we have

$$
x\left(t-t_{o}\right) \rightarrow y\left(t-t_{o}\right)
$$

for any arbitrary $t_{o}$ (assuming initial conditions are also delayed by $t_{o}$ )

(a)

(b)

- a system is time-varying if the the above does not hold
- a linear-time-invariant continuous system (LTIC) is a CT system that both linear and time-invariant


## Example 2.3

determine the time invariance of the following systems:
(a) $y(t)=x(t) u(t)$
(b) $y(t)=\frac{d}{d t} x(t)$
(c) $y(t)=e^{-t} x(t)$
(d) $y(t)=e^{x(t)}$

## Solution:

(a) the input is modified by a time-dependent function $u(t)$ so the system is time-varying; we can show this through a counterexample:

$$
\begin{aligned}
x_{1}(t)=\delta(t+1) & \Longrightarrow \quad y_{1}(t)=0 \\
x_{2}(t)=x_{1}(t-2)=\delta(t-1) & \Longrightarrow \quad y_{2}(t)=\delta(t-1)
\end{aligned}
$$

since $y_{2}(t) \neq y_{1}(t-2)=0$, the system is time-varying
(b) for input $x(t)$, we have output $y(t)=\frac{d}{d t} x(t)$; note that

$$
y\left(t-t_{o}\right)=\frac{d}{d\left(t-t_{o}\right)} x\left(t-t_{o}\right)=\frac{d}{d t} x\left(t-t_{o}\right)
$$

which is the output to a delayed input $x\left(t-t_{o}\right)$; hence, the system is time invariant
(c) the output with delayed input is $e^{-t} x\left(t-t_{o}\right)$, which is not equal to the delayed output $e^{-\left(t-t_{o}\right)} x\left(t-t_{o}\right)$; hence, system is time-varying
(d) let $x_{1}(t) \rightarrow y_{1}(t)=e^{x_{1}(t)}$; for input $x_{2}(t)=x\left(t-t_{o}\right)$ the output is $y_{2}(t)=e^{x_{2}(t)}=e^{x\left(t-t_{o}\right)}=y_{1}\left(t-t_{o}\right)$; hence the system is time invariant

## Instantaneous and dynamic systems

Instantaneous (memoryless) system: a system is instantaneous (static) or memoryless if the output at any time $t$ depends, at most, on its input(s) at the same time $t$, and not on any past or future values of the input(s)

## Dynamic systems (with memory)

- a system is dynamic or with memory if output depends on future or past values of input(s)
- a finite-memory system with a memory of $T$ seconds is a system whose output at $t$ is completely determined by the input signals over the past $T$ seconds (interval from $(t-T)$ to $t$ )


## Example 2.4

determine whether the following systems are memoryless:
(a) $y(t-1)=2 x(t-1)$
(b) $y(t)=\frac{d}{d t} x(t)$
(c) $y(t)=(t-1) x(t)$

## Solution:

(a) memoryless since the output at any time depends on the input at the same time
(b) using the fundamental theorem of calculus:

$$
y(t)=\lim _{T \rightarrow 0} \frac{x(t)-x(t-T)}{T}
$$

the system is not memoryless since the output at a particular time depends on more than just the input at the same time
(c) the system is memoryless since the output at a particular time depends only on the strength of the input at the same time

## Causal and noncausal systems

Causal systems: a system is causal (physical or nonanticipative) if the output at $t_{0}$ depends only on the input $x(t)$ for $t \leq t_{0}$

- output does not depend on future input
- the value of output occurs only during or after the time in which it is excited

Noncausal systems: a system that violates the condition of causality is called a noncausal (or anticipative) system

- unrealizable in real time but can be realizable with time delay; for example, we can prerecord data; in such cases, the input's future values are available to us
- noncausal systems are realizable when the independent variable is other than "time" (e.g., space); nontemporal systems, such as those occurring in optics, can be noncausal and still realizable


## Example 2.5

determine whether the following systems are causal: (a) $y(t)=x(-t)$, (b) $y(t)=x(t+1)$, (c) $y(t+1)=x(t)$

## Solution:

(a) the input $x(t)=\delta(t-1)$, which is nonzero at $t=1$, produces an output $y(t)=\delta(t+1)$, which is nonzero at $t=-1$, a time 2 seconds earlier than the input; hence, the system is not causal
(b) the output at time $t$ depends on the input at future time of $t+1$; thus, the system is not causal
(c) the output at time $t+1$ depends only on the past input (one second in the past); hence, the system is causal

## Invertible and noninvertible systems

Invertible systems: a system $S$ is invertible if we can find the input $x(t)$ back from the corresponding output $y(t)$ by some operation

- the system that achieves the inverse operation is the inverse system for $S$

- for an invertible system, every input have a unique output (one-to-one mapping between input and output)


## Noninvertible systems

- a system is noninvertible when it is impossible to obtain the input from the output (several different inputs result in the same output)
- examples: two inputs give same output
- rectifier: $y(t)=|x(t)|$
$-y(t)=\sin (x(t))$


## Example 2.6

determine whether the following systems are invertible: (a) $y(t)=x(-t)$, (b) $y(t)=t x(t)$, (c) $y(t)=\frac{d}{d t} x(t)$ (d) $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$

## Solution:

(a) since $x(t)=y(-t)$ for all $t$, the system is invertible
(b) we have $x(t)=\frac{1}{t} y(t)$ for all $t$ except $t=0$ and the system is noninvertible since we cannot recover $x(0)$
(c) since the derivative of constants are equal, the system is noninvertible; for example, both $x_{1}(t)=t+1$ and $x_{2}(t)=t-5$ give the same output
(d) invertible because the input can be obtained by taking the derivative of the output; hence, the inverse system equation is $y(t)=d x / d t$

## BIBO stable systems

a system is bounded-input-bounded-output (BIBO) stable (externally stable) if every bounded input applied at the input terminal results in a bounded output

Examples: determine whether the following systems are BIBO-stable: (i); (ii) $y(t)=t x(t)$; (iii) $y(t)=\frac{d}{d t} x(t)$
(i) the system $y(t)=x^{2}(t)$ is BIBO stable: if the input is bounded $|x(t)| \leq M_{x}<\infty$, then $|y(t)|=\left|x^{2}(t)\right|=|x(t)|^{2} \leq M_{x}^{2}<\infty$
(ii) the bounded-amplitude input $x(t)=u(t)$ produces the output $y(t)=t u(t)$, which grows to infinity as $t \rightarrow \infty$; thus system is a BIBO-unstable system
(iii) the bounded-amplitude input $x(t)=u(t)$ produces the output $y(t)=\delta(t)$ whose amplitude is infinite at $t=0$; thus, the system is a BIBO-unstable

## Linear differential system

$$
\begin{aligned}
& a_{0} \frac{d^{N} y(t)}{d t^{N}}+a_{1} \frac{d^{N-1} y(t)}{d t^{N-1}}+\cdots+a_{N} y(t) \\
& \quad=b_{0} \frac{d^{M} x(t)}{d t^{M}}+b_{1} \frac{d^{M-1} x(t)}{d t}+\cdots+b_{M} x(t)
\end{aligned}
$$

- order is $N$
- the system described by differential equation of the above form is linear
- the system is time-invariant if $a_{i}, b_{i}$ are constants (independent of time)
- many practical systems can be modeled/approximated by linear differential systems
- without loss of generality, we assume that $a_{0}=1$ since if not, then we can always divide both sides by $a_{0}$


## Differentiation notations

- the are several notation for differentiation:

$$
\dot{y}(t)=y^{\prime}(t):=\frac{d y(t)}{d t}, \quad \ddot{y}(t)=y^{\prime \prime}(t):=\frac{d^{2} y(t)}{d t^{2}}, \quad \ldots, \quad y^{(N)}:=\frac{d^{N} y(t)}{d t^{N}}
$$

- for convenience, we often use $D$ instead of $d / d t$ :

$$
\frac{d y(t)}{d t}:=D y(t), \quad \frac{d^{2} y(t)}{d t^{2}}:=D^{2} y(t), \quad \ldots, \quad \frac{d^{N} y(t)}{d t^{N}}:=D^{N} y(t)
$$

- using the above, the linear differential system becomes

$$
\left(a_{0} D^{N}+a_{1} D^{N-1}+\cdots+a_{N}\right) y(t)=\left(b_{0} D^{M}+b_{M-1} D^{1}+\cdots+b_{M}\right) x(t)
$$

Integration operation

$$
\int_{-\infty}^{t} y(\tau) d \tau:=\frac{1}{D} y(t)
$$

## Exercises

- show that the system with the input $x(t)$ and the output $y(t)$ described by $y(t)=\operatorname{Re}\{x(t)\}$ satisfies the additivity property but violates the homogeneity property (hence, nonlinear)
- determine whether that the system described by $y(t)=(\sin t) x(t-2)$ is time-invariant or time-varying
- determine whether the the system whose input-output relationship is $y(t)=x(t / 2)$ time invariant or not
- show that a system described by the following equation is noncausal

$$
y(t)=\int_{t-5}^{t+5} x(\tau) d \tau
$$

show that this system can be realized physically if we accept a delay of 5 seconds in the output

## Outline

- CT systems
- classifications of CT systems
- modeling of basic systems
- introduction to state-space modeling


## Basic electrical elements laws

## Resistor

$$
v_{R}=i_{R} R
$$



## Capacitor

$$
\begin{aligned}
i_{C} & =C \frac{d v_{C}}{d t} \\
v_{C}(t) & =\frac{1}{C} \int_{t_{0}}^{t} i_{C} d \tau+v_{C}\left(t_{0}\right)
\end{aligned}
$$



Inductor

$$
\begin{aligned}
v_{L} & =L \frac{d i_{L}}{d t} \\
i_{L}(t) & =\frac{1}{L} \int_{t_{0}}^{t} v_{L} d \tau+i\left(t_{0}\right)
\end{aligned}
$$



## Example 2.7


find the input-output equation relating the input voltage $x(t)$ to the output current (loop current) $y(t)$

Solution: KVL, gives

$$
v_{L}(t)+v_{R}(t)+v_{C}(t)=x(t)
$$

using voltage current-law for each element we obtain:

$$
\frac{d y(t)}{d t}+3 y(t)+2 \int_{-\infty}^{t} y(\tau) d \tau=x(t)
$$

differentiating both sides, we get the input-output relation:

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}
$$

We can write the above as

$$
(D+3 D+2) y(t)=D x(t)
$$

## Example 2.8


find the equation relating input-output if the input is the voltage $x(t)$ and output is
(a) the loop current $i(t)$
(b) the capacitor voltage $y(t)$

## Solution:

(a) the loop equation is

$$
15 i(t)+5 \int_{-\infty}^{t} i(\tau) d \tau=x(t)
$$

in operator notation, we have

$$
15 i(t)+\frac{5}{D} i(t)=x(t)
$$

multiplying both sides by $D$ (i.e., differentiating the equation), we obtain

$$
(15 D+5) i(t)=D x(t)
$$

(b) using $i(t)=C \frac{d y(t)}{d t}=\frac{1}{5} D y(t)$, we get

$$
(3 D+1) y(t)=x(t)
$$

## Exercises

- If the inductor voltage $v_{L}(t)$ is taken as the output, show that the $R L C$ circuit in page 2.31 has an input-output equation of

$$
\left(D^{2}+3 D+2\right) v_{L}(t)=D^{2} x(t)
$$

- If the capacitor voltage $v_{C}(t)$ is taken as the output, show that the $R L C$ circuit in page 2.33 has an input-output equation of

$$
\left(D^{2}+3 D+2\right) v_{C}(t)=2 x(t)
$$

## Mechanical translational laws

the basic elements used in modeling translational systems (moving along a straight line) are ideal masses, linear springs, and dashpots providing viscous damping

Newton's law of motion: a force $x(t)$ on mass $M$ causes a motion $y(t)$ and acceleration $\ddot{y}(t)$

$$
x(t)=M \ddot{y}(t)=M D^{2} y(t)
$$



Linear spring: force $x(t)$ required to stretch (or compress) a linear spring with stiffness $K$ by amount $y(t)$

$$
x(t)=K y(t)
$$



Linear dashpot: the force $x(t)$ moving the dashpot with damping coefficient $B$ is proportional to the relative velocity $\dot{y}(t)$ of one surface with respect to the other

$$
x(t)=B \dot{y}(t)=B D y(t)
$$



## Example 2.9

find the input-output relationship for the translational mechanical system shown below; the input is the force $x(t)$, and the output is the mass position $y(t)$


Solution: in mechanical systems it is helpful to draw a free-body diagram of each junction, which is a point at which two or more elements are connected

from Newton's second law, the net force must be

$$
M \ddot{y}(t)=-B \dot{y}(t)-K y(t)+x(t)
$$

or

$$
\left(M D^{2}+B D+K\right) y(t)=x(t)
$$

## Example 2.10 (car suspension system)



- the input $x(t)$ is the vertical displacement of the pavement, defined relative to a reference ground level
- the output $y(t)$ is the vertical displacement of the car chassis from its equilibrium position
- $M$ is one-fourth of the car's mass, because the car has four wheels
- forces exerted by the spring $F_{s}$ and shock absorber $F_{d}$ depend on the relative displacement $(y-x)$ of the car relative to the pavement
- when $(y-x)$ is positive (car mass moving away from the pavement), the spring force $F_{s}$ is directed downward; hence, $F_{s}=-K(y-x)$
- similarly, the damper force $F_{d}$ exerted by the shock absorber also is pointed downward: $F_{d}=-B \frac{d}{d t}(y-x)$
- they act to oppose the upward inertial force $F_{c}$ on the car, which depends on only the car displacement $y(t)$
- using Newton's law, $F_{c}=M a=M\left(d^{2} y / d t^{2}\right)$, the force equation is $F_{c}=F_{s}+F_{d}$ or

$$
M \frac{d^{2} y}{d t^{2}}=-K(y-x)-B \frac{d}{d t}(y-x)
$$

which can be written as

$$
\frac{d^{2} y}{d t^{2}}+\frac{B}{M} \frac{d y}{d t}+\frac{K}{M} y=\frac{B}{M} \frac{d x}{d t}+\frac{K}{M} x
$$

this is a second-order linear differential system

## Outline

- CT systems
- classifications of CT systems
- modeling of basic systems
- introduction to state-space modeling


## External and internal descriptions

External description: a description that can be obtained from measurements at the external terminals is an external description

Internal description: an internal description is capable of providing complete information about all possible signals in the system

- the input-output description is an external description
- external descriptions may not provide complete information about all signals in the systems
- an external description can always be found from an internal description, but the converse is not necessarily true


## Example: external description


assume that there is some initial charge $Q_{0}$ present on the capacitor: the output $y(t)$ will depend on input $x(t)$ and initial charge $Q_{0}$

- zero-input response: when $x(t)=0$ (short input), the currents in the two $2 \Omega$ resistors in the upper and the lower branches at the output terminals are equal and opposite because of the balanced nature of the circuit; hence, $y(t)=0$ even if there is initial charge
- zero-state response: when $Q_{0}=0$ (short capacitor), then the current divides equally between branches and the voltage across the capacitor continues to remain zero and we get the equivalent circuit on right

$$
y(t)=2 i(t)=\frac{2}{5} x(t)
$$

- the total response $y(t)=\frac{2}{5} x(t)$, which gives the external description; no external measurement can detect the presence of the capacitor


## Example: state-space internal description

consider the $R L$ network shown with an initial current of $i(0)$


1. we select the current, $i(t)$, for which we will write and solve a differential equation using Laplace transforms
2. we write the loop equation,

$$
L \frac{d i}{d t}+R i=v(t)
$$

3. solving gives: $i(t)=\frac{1}{R}\left(1-e^{-(R / L) t}\right)+i(0) e^{-(R / L) t}$
4. we can now solve for all of the other network variables algebraically in terms of $i(t)$ and the input voltage:

$$
\begin{aligned}
& v_{R}(t)=R i(t) \quad \text { (output equation 1) } \\
& v_{L}(t)=v(t)-R i(t) \quad \text { (output equation 2) }
\end{aligned}
$$

knowing the state variable, $i(t)$, and the input, $v(t)$, we can find the value, or state, of any network variable at any time, $t \geq t_{0}$
5. since the variables of interest are completely described by the last three equations, we say that these combined equations form a viable representation of the network, which we call a state-space representation

$$
\begin{aligned}
\frac{d i}{d t} & =\frac{1}{L}[v(t)-R i(t)] \quad \text { (state equation) } \\
v_{R}(t) & =R i(t) \quad \text { (output equation 1) } \\
v_{L}(t) & =v(t)-\operatorname{Ri}(t) \quad \text { (output equation 2) }
\end{aligned}
$$

## Example: Second-order system

consider the second-order circuit


1. since the network is of second order, two simultaneous, first-order differential equations are needed to solve for two state variables; we select $i(t)$ and $q(t)$, the charge on the capacitor, as the two state variables
2. writing the loop equation yields

$$
L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t=v(t)
$$

converting to charge, using $i(t)=d q / d t$, we get

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=v(t)
$$

we can convert the previous equation into two simultaneous, first-order differential equations in terms of $i(t)$ and $q(t)$
the first equation can be $d q / d t=i$; the second equation can be formed by substituting $\int i d t=q$ into the equation and solving for $d i / d t$ :

$$
\begin{aligned}
& \frac{d q}{d t}=i \\
& \frac{d i}{d t}=-\frac{1}{L C} q-\frac{R}{L} i+\frac{1}{L} v(t)
\end{aligned}
$$

3. these equations are the state equations and can be solved simultaneously for the state variables, $q(t)$ and $i(t)$ if we know the input, $v(t)$, and the initial conditions for $q(t)$ and $i(t)$
4. from these two state variables, we can solve for all other network variables; for example:

$$
v_{L}(t)=-\frac{1}{C} q(t)-R i(t)+v(t)
$$

this equation is an output equation
5. a state-space representation of the circuit is:

$$
\begin{aligned}
\frac{d q}{d t} & =i \\
\frac{d i}{d t} & =-\frac{1}{L C} q-\frac{R}{L} i+\frac{1}{L} v(t) \\
v_{L}(t) & =-\frac{1}{C} q(t)-\operatorname{Ri}(t)+v(t)
\end{aligned}
$$

Vector matrix form: the state equations, can be written as

$$
\dot{\mathbf{q}}=\mathbf{A q}+\mathbf{B} x
$$

where

$$
\begin{array}{ll}
\dot{\mathbf{q}}=\left[\begin{array}{l}
d q / d t \\
d i / d t
\end{array}\right] ; & \mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 / L C & -R / L
\end{array}\right] \\
\mathbf{q}=\left[\begin{array}{c}
q \\
i
\end{array}\right] ; & \mathbf{B}=\left[\begin{array}{c}
0 \\
1 / L
\end{array}\right] ;
\end{array}
$$

the output equation, can be written as

$$
y=\mathbf{C x}+D x
$$

where

$$
y=v_{L}(t) ; \quad \mathbf{C}=\left[\begin{array}{ll}
-1 / C & -R
\end{array}\right] ; \quad \mathbf{q}=\left[\begin{array}{c}
q \\
i
\end{array}\right] ; \quad D=1 ; \quad x=v(t)
$$

Uniqueness: a state-space representation is not unique, since a different choice of state variables leads to a different representation of the same system

Example: if we choose $v_{R}(t)$ and $v_{C}(t)$ to be the state variables in the previous example, then state equation become:

$$
\begin{aligned}
\frac{d v_{R}}{d t} & =-\frac{R}{L} v_{R}-\frac{R}{L} v_{C}+\frac{R}{L} v(t) \\
\frac{d v_{C}}{d t} & =\frac{1}{R C} v_{R}
\end{aligned}
$$

## State-space description

State-space modeling: the state-space model of a system is an internal description where all signals in the system are expressed using state variables

- System variable: any variable that responds to an input or initial conditions in a system
- State variables: the minimal number of variables $q_{1}(t), q_{2}(t), \ldots, q_{N}(t)$ such that their value at $t_{0}$ are sufficient to determine all signals in the system for $t \geq t_{0}$ (given the input(s) for $t \geq t_{0}$ ) are called state variables
- State vector: a vector whose elements are the state variables
- State equations: a set of $n$ simultaneous, first-order differential equations relating state variables
- Output equation: the algebraic equation that expresses the output variables of a system as linear combinations of the state variables and the inputs
(for input-output description, an $N$ th-order differential system is described by an $N$ th-order equation; in the state-variable approach, the same system can be described by $N$ simultaneous first-order state equations)


## Linear system state-space equations

for a linear continuous-time systems, the state and output equations can be expressed as:

$$
\begin{aligned}
\dot{q} & =A q+B x \\
y & =C q+D x
\end{aligned}
$$

- $\boldsymbol{q}=\left(q_{1}, q_{2}, \ldots, q_{N}\right)$ is the state vector
- $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{M}\right)$ is the input vector
- $\boldsymbol{A}$ is an $N \times N$ matrix and $\boldsymbol{B}$ is an $N \times M$ matrix
- $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is the output vector
- $\boldsymbol{C}$ is an $k \times N$ matrix and $\boldsymbol{D}$ is an $k \times M$ matrix


## Example 2.11

given the electrical network, find a state-space representation if the output is the current through the resistor


Solution: the following steps will yield a viable representation of the network in state-space

- select the state variables by writing the derivative equation for all energystorage elements, that is, the inductor and the capacitor:

$$
\begin{aligned}
C \frac{d v_{C}}{d t} & =i_{C} \\
L \frac{d i_{L}}{d t} & =v_{L}
\end{aligned}
$$

we choose the state variables as the quantities that are differentiated, namely $v_{C}$ and $i_{L}$

- since $i_{C}$ and $v_{L}$ are not state variables, our next step is to express $i_{C}$ and $v_{L}$ as linear combinations of the state variables, $v_{C}$ and $i_{L}$, and the input, $v(t)$
- we now use Kirchhoff's voltage and current laws, to obtain $i_{C}$ and $v_{L}$ in terms of the state variables, $v_{C}$ and $i_{L}$; at Node 1,

$$
\begin{aligned}
i_{C} & =-i_{R}+i_{L} \\
& =-\frac{1}{R} v_{C}+i_{L}
\end{aligned}
$$

which yields $i_{C}$ in terms of the state variables, $v_{C}$ and $i_{L}$

- around the outer loop,

$$
v_{L}=-v_{C}+v(t)
$$

which yields $v_{L}$ in terms of the state variable, $v_{C}$, and the source, $v(t)$

- putting things together

$$
\begin{aligned}
C \frac{d v_{C}}{d t} & =-\frac{1}{R} v_{C}+i_{L} \\
L \frac{d i_{L}}{d t} & =-v_{C}+v(t)
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{d v_{C}}{d t} & =-\frac{1}{R C} v_{C}+\frac{1}{C} i_{L} \\
\frac{d i_{L}}{d t} & =-\frac{1}{L} v_{C}+\frac{1}{L} v(t)
\end{aligned}
$$

- we now find the output equation; since the output is $i_{R}(t)$,

$$
i_{R}=\frac{1}{R} v_{C}
$$

the final result for the state-space representation is found by representing them in vector-matrix form as follows:

$$
\begin{gathered}
{\left[\begin{array}{c}
v_{C}^{\prime} \\
i_{L}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 /(R C) & 1 / C \\
-1 / L & 0
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / L
\end{array}\right] v(t)} \\
i_{R}=\left[\begin{array}{ll}
1 / R & 0
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]
\end{gathered}
$$

where (.)' indicates differentiation with respect to time

## Example 2.12


find the state equations using the state variables $q_{1}(t)$ (capacitor voltage) and the $q_{2}(t)$ (inductor current); verify that all possible system signals at some instant $t$ can be determined from the system state and the input at $t$

Solution: $\dot{q}_{1}$ is the current through the capacitor and $2 \dot{q}_{2}$ is the voltage across the inductor; using KCL and KVL, we have

$$
\begin{aligned}
\dot{q}_{1} & =i_{C}=i_{1}-i_{2}-q_{2}=\left(x-q_{1}\right)-0.5 q_{1}-q_{2}=-1.5 q_{1}-q_{2}+x \\
2 \dot{q}_{2} & =q_{1}-v_{3}=q_{1}-5 q_{2} \quad \Longleftrightarrow \quad \dot{q}_{2}=0.5 q_{1}-2.5 q_{2}
\end{aligned}
$$

thus, the state equations are

$$
\begin{aligned}
& \dot{q}_{1}=-1.5 q_{1}-q_{2}+x \\
& \dot{q}_{2}=0.5 q_{1}-2.5 q_{2}
\end{aligned}
$$

in matrix form, we have

$$
\underbrace{\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]}_{\dot{\boldsymbol{q}}}=\underbrace{\left[\begin{array}{cc}
-1.5 & -1 \\
0.5 & -2.5
\end{array}\right]}_{\boldsymbol{A}} \underbrace{\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]}_{\boldsymbol{q}}+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{\boldsymbol{B}} x
$$

once we solve for $q_{1}$ and $q_{2}$ at $t$, we can use KCL and KVL to find any possible signal (current/voltage) in the circuit at $t$ :

$$
\begin{aligned}
i_{1} & =\left(x-q_{1}\right) / 1 & i_{C} & =\left(x-q_{1}\right) / 1-q_{1} / 2-q_{2} \\
v_{1} & =x-q_{1} & i_{3} & =q_{2} \\
v_{2} & =q_{1} & v_{3} & =5 q_{2} \\
i_{2} & =q_{1} / 2 & v_{L} & =q_{1}-5 q_{2}
\end{aligned}
$$

if the outputs are $y_{1}=v_{1}$ and $y_{2}=i_{C}$, then the output equations are

$$
\begin{aligned}
& y_{1}=x-q_{1} \\
& y_{2}=-(3 / 2) q_{1}-q_{2}+x
\end{aligned}
$$

or in matrix form:

$$
\underbrace{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]}_{\boldsymbol{y}}=\underbrace{\left[\begin{array}{cr}
-1 & 0 \\
-3 / 2 & -1
\end{array}\right]}_{\boldsymbol{C}} \underbrace{\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]}_{\boldsymbol{q}}+\underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{\boldsymbol{D}} x
$$

## Finding state equations of electrical circuits

## Mesh-current method procedure

1. choose all independent capacitor voltages and inductor currents to be the state variables
2. write the mesh-loop currents equations and express the state variables and their first derivatives in terms of the loop currents
3. eliminate all variables other than state variables (and their first derivatives)

## Example 2.13

write the state equations for the circuit shown


Solution: there is one inductor and one capacitor in the network; thus, we choose the inductor current $q_{1}$ and the capacitor voltage $q_{2}$ as the state variables loop equations: loop currents and state variables relation:

$$
\begin{aligned}
4 i_{1}-2 i_{2} & =x \\
2\left(i_{2}-i_{1}\right)+\dot{q}_{1}+q_{2} & =0 \\
-q_{2}+3 i_{3} & =0
\end{aligned}
$$

$$
\begin{aligned}
q_{1} & =i_{2} \\
\frac{1}{2} \dot{q}_{2} & =i_{2}-i_{3}
\end{aligned}
$$

from the second loop equation, we have

$$
\dot{q}_{1}=2\left(i_{1}-i_{2}\right)-q_{2}=-i_{2}+2 i_{1}-i_{2}-q_{2}
$$

using $q_{1}=i_{2}$ and $2 i_{1}-i_{2}=1 / 2 x$, we can eliminate $i_{1}$ and $i_{2}$, to obtain

$$
\dot{q}_{1}=-q_{1}-q_{2}+\frac{1}{2} x
$$

using $q_{1}=i_{2}$ and $\frac{1}{2} \dot{q}_{2}=i_{2}-i_{3}$ and the last loop equation, we get

$$
\dot{q}_{2}=2 q_{1}-\frac{2}{3} q_{2}
$$

hence the state equations are

$$
\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
2 & -\frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right] x
$$

## Advantages time-domain analysis

- with the arrival of space exploration, requirements for systems increased in scope; modeling systems by using linear, time-invariant differential equations and subsequent transfer functions became inadequate
- the state-space approach (also referred to as the modern, or time-domain, approach) is a unified method for modeling, analyzing, and designing a wide range of systems
- for example, the state-space approach can be used to represent nonlinear and time-varying systems (e.g., missiles with varying fuel levels or lift in an aircraft flying through a wide range of altitudes)
- multiple-input, multiple-output systems (such as a vehicle with input direction and input velocity yielding an output direction and an output velocity) can be compactly represented in state-space with a model similar in form and complexity to that used for single-input, single-output systems
- the time-domain approach can be used to represent systems with a digital computer in the loop or to model systems for digital simulation; with a simulated system, system response can be obtained for changes in system parameters-an important design tool


## References

- B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 1 (1.6-1.10) chapter 10 (10.1-10.3)
- M. J. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB, McGraw Hill, chapter 4 (4.1-4.2)

