1. Continuous-time signals

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

Continuous-time signal

a continuous-time (CT) signal is a function $x(t)$ defined at every time t

- voltage, current, audio signals
- light intensity variations in an optical fiber
- position or velocity of moving object
a continuous-time function is not the same as continuous function

Sinusoids and exponentials

Sinusoids

$$
x(t)=A \cos (2 \pi f t+\theta)
$$

- f is the (cyclic) frequency (in Hertz); $T=1 / f$ is the period
- A is the amplitude and θ is the phase (in degrees or radians):
- $\omega=2 \pi f=2 \pi / T$ is the radian frequency

Exponentials

$$
x(t)=A e^{s t}=A e^{(\sigma+j \omega) t}=A e^{\sigma t}(\cos \omega t+j \sin \omega t)
$$

- $s=\sigma+j \omega$ is called complex frequency
- $|\omega|$ is called radian frequency or frequency of oscillation
- σ is the decay rate or neper frequency
several functions can be expressed in terms of $e^{s t}$:
- constant: $k=k e^{0 t}(s=0)$
- monotonic exponential: $e^{\sigma t}(\omega=0)$
- sinusoid: $\cos \omega t=\operatorname{Re}\left(e^{ \pm j \omega t}\right)(\sigma=0, \omega= \pm j \omega)$
- exponentially varying sinusoid: $e^{\sigma t} \cos \omega t(s=\sigma \pm j \omega)$

Causal signals

a signal $x(t)$ is causal if

$$
x(t)=0 \quad \text { for } t<0
$$

- causal signals do not start before $t=0$
- a signal that starts before $t=0$ is called noncausal
- a signal $x(t)$ is anticausal if $x(t)=0, t \geq 0$
- a signal that exists over $-\infty<t<\infty$ is called everlasting signal

Periodic and aperiodic signals

a signal $x(t)$ is periodic if for some positive constant T

$$
x(t)=x(t+T), \quad \text { for all } t
$$

- smallest T is called fundamental period of $x(t)$, denoted by T_{0}
- $f_{0}=1 / T_{0}$ is cyclic frequency; $\omega_{0}=2 \pi f_{0}$ is radian frequency
- a periodic signal must be an everlasting signal
- areas under $x(t)$ over any interval of duration T_{0} are equal

$$
\int_{a}^{a+T_{0}} x(t) d t=\int_{b}^{b+T_{0}} x(t) d t \triangleq \int_{T_{0}} x(t) d t
$$

- a signal is aperiodic if it is not periodic

Sum of periodic signals

$$
x(t)=x_{1}(t)+x_{2}(t)
$$

- $x_{1}(t)$ and $x_{2}(t)$ are is periodic with periods T_{01} and T_{02}
- $x(t)$ is periodic with period T if there exists a time T that is an integer multiple of both T_{01} and T_{02} :

$$
q T_{01}=p T_{02}
$$

Fundamental period: the fundamental period T_{0} of $x(t)$ is the least common multiple (LCM) of T_{01}, T_{02}

- if T_{01} / T_{02} is a rational number, then $x(t)$ is periodic; otherwise, it is aperiodic
- if $T_{01} / T_{02}=p_{0} / q_{0}$ for some integers p_{0} and q_{0} in smallest form, then

$$
T_{0}=\operatorname{LCM}\left(T_{01}, T_{02}\right)=q_{0} T_{01}=p_{0} T_{02}
$$

Example 1.1

- the function $x(t)=3+t^{2}$ is aperiodic
- the function $x(t)=e^{-j 60 \pi t}$ can be expressed as

$$
x(t)=\cos (60 \pi t)-j \sin (60 \pi t)
$$

which is a sum of two periodic signals that have the same fundamental period $T_{01}=T_{02}=2 \pi / 60 \pi=1 / 30$; thus, the fundamental period $T_{0}=1 / 30 \mathrm{~s}$

- the function $x(t)=10 \sin (12 \pi t)+4 \cos (18 \pi t)$ is the sum of two periodic functions with $T_{01}=1 / 6$ second and $T_{02}=1 / 9$ second; we have $T_{01} / T_{02}=9 / 6=3 / 2$ and the $T_{0}=\operatorname{LCM}(1 / 6,1 / 9)=1 / 3$
- the function $x(t)=10 \sin (12 \pi t)+4 \cos (18 t)$ is the sum of two periodic functions with $T_{01}=1 / 6$ second and $T_{02}=\pi / 9$ seconds; the ratio of the two fundamental periods is $2 \pi / 3$ irrational; therefore $x(t)$ is aperiodic

Piecewise signals

a piecewise signal is a function with different expressions over different intervals

Example

$$
x_{1}(t)=\left\{\begin{array}{ll}
1 & 0 \leq t<1 \\
-1 / 2 & 1 \leq t \leq 2 \\
0 & \text { otherwise }
\end{array} \quad x_{2}(t)= \begin{cases}t & 0 \leq t \leq 1 \\
-(t-2) & 1 \leq t \leq 2 \\
0 & \text { otherwise }\end{cases}\right.
$$

Exercises

find and sketch $\int_{-\infty}^{t} x_{1}(\tau) d \tau$ and $\int_{-\infty}^{t} x_{2}(\tau) d \tau$ for the signals $x_{1}(t)$ and $x_{2}(t)$

Answer:

Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

Time shifting

$x(t)$ can be shifted to the right or left by $t_{0}>0$ seconds:

$$
\begin{array}{ll}
x\left(t-t_{0}\right) & \text { (right-shifted (delayed) signal) } \\
x\left(t+t_{0}\right) & \text { (left-shifted (advanced) signal) }
\end{array}
$$

(b)

(c)

Example 1.2

$$
x(t)= \begin{cases}e^{-2 t} & t \geq 0 \\ 0 & t<0\end{cases}
$$

sketch and mathematically describe the function $x(t)$ delayed by 1 second and advanced by 1 second

Solution:

$$
\begin{aligned}
& x(t-1)= \begin{cases}e^{-2(t-1)} & t-1 \geq 0 \\
0 & t-1<0\end{cases} \\
& x(t+1)= \begin{cases}e^{-2(t+1)} & t+1 \geq 0 \\
0 & t+1<0\end{cases}
\end{aligned}
$$

Time scaling

time scaling is the compression or expansion of a signal in time:

$$
\begin{aligned}
& \phi(t)=x(\alpha t), \quad \text { compression by factor } \alpha>1 \\
& \phi(t)=x(t / \alpha), \quad \text { expansion by factor } \alpha>1
\end{aligned}
$$

Example 1.3

sketch and mathematically describe the signal $x(t)$ time-compressed by factor 3 ; repeat the problem for the same signal time-expanded by factor 2

Solution:

$$
x(t)= \begin{cases}2 & -1.5 \leq t<0 \\ 2 e^{-t / 2} & 0 \leq t<3 \\ 0 & \text { otherwise }\end{cases}
$$

compressed-signal

$$
x_{c}(t)=x(3 t)= \begin{cases}2 & -1.5 \leq 3 t<0 \\ 2 e^{-3 t / 2} & 0 \leq 3 t<3 \\ 0 & \text { otherwise }\end{cases}
$$

expanded signal
$x_{e}(t)=x(t / 2)= \begin{cases}2 & -1.5 \leq t / 2<0 \\ 2 e^{-t / 4} & 0 \leq t / 2<3 \\ 0 & \text { otherwise }\end{cases}$

Time reversal

time-reversal is the reflection about the vertical axis

$$
\phi(t)=x(-t)
$$

Example 1.4

sketch and mathematically describe $x(-t)$

Solution:

(a)

$$
\begin{aligned}
x(t) & = \begin{cases}e^{t / 2} & -5<t \leq-1 \\
0 & \text { otherwise }\end{cases} \\
x(-t) & = \begin{cases}e^{-t / 2} & -5<-t \leq-1(1 \leq t<5) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Combined operations

$$
x\left(\alpha t-t_{0}\right)=x\left(\alpha\left[t-\frac{t_{0}}{\alpha}\right]\right)
$$

1. time shift, then time scale the shifted signal

$$
x(t) \xrightarrow{\text { time shift by } t_{0}} x\left(t-t_{0}\right) \xrightarrow{\text { time scale by } \alpha} x\left(\alpha t-t_{0}\right)
$$

2. time scale, then time shift

$$
x(t) \xrightarrow{\text { time scale by } \alpha} x(\alpha t) \xrightarrow{\text { time shift by } t_{0} / \alpha} x\left(\alpha t-t_{0}\right)
$$

Other form

$$
\begin{gathered}
x\left(\frac{t-t_{0}}{\alpha}\right) \\
x(t) \xrightarrow{\text { time scale by } 1 / \alpha} x(t / \alpha) \xrightarrow{\text { time shift by } t_{0}} x\left(\frac{t-t_{0}}{\alpha}\right)
\end{gathered}
$$

Example: find $3 x(-2 t-1)$ from $x(t)$

amplitude scaling
1

Example: find $-2 x\left(\frac{t+2}{4}\right)$ from $x(t)$

Exercises

- consider the signal $x(t)$

(a) sketch $x(t-2)$ and show it can be described mathematically as $x_{d}(t)=2(t-2)$ for $2 \leq t \leq 3$, and equal to 0 otherwise
(b) sketch $x(t+1)$ and show that it can be described as $x_{a}(t)=2(t+1)$ for $-1 \leq t \leq 0$, and 0 otherwise
- sketch $y(t)=x(-3 t-4)$ for the signal $x(t)$ shown with $T_{1}=2$ and $T_{2}=4$

Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

Unit step

unit step function:

$$
u(t)= \begin{cases}1 & t>0 \\ 0, & t \leq 0\end{cases}
$$

- $u(t)$ is sometimes defined as

$$
u(t)= \begin{cases}1 & t>0 \\ 0.5 & t=0 \\ 0, & t<0\end{cases}
$$

which is convenient from a theoretical signals and systems perspective

- for real-world signals applications however, it makes no practical difference
unit-step is useful to describe causal signals
- $e^{-a t} u(t)$ is zero for $t<0$ and $e^{-a t}$ for $t \geq 0$; similarly for $\cos (2 \pi t) u(t)$

- Unit ramp:

$$
\begin{aligned}
\operatorname{ramp}(t) & = \begin{cases}t & t>0 \\
0, & t \leq 0\end{cases} \\
& =\int_{-\infty}^{t} u(\tau) d \tau=t u(t)
\end{aligned}
$$

Shifted step: a step function equal to K that occurs at $t=a$ is expressed as

$$
K u(t-a)= \begin{cases}0, & t<a \\ K, & t>a\end{cases}
$$

Shifted and reversed step: a step equal to K for $t<a$ is written as

$$
K u(a-t)= \begin{cases}K, & t<a \\ 0, & t>a\end{cases}
$$

Rectangular pulse

a rectangular pulse from t_{1} to t_{2} can be represented as $u\left(t-t_{1}\right)-u\left(t-t_{2}\right)$

Examples:

- rectangular pulse from 2 to 4

- the unit rectangle (unit gate) is defined as

$$
\begin{aligned}
\operatorname{rect}(t) & =\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right) \\
& = \begin{cases}1 & |t|<\frac{1}{2} \\
0, & |t| \geq \frac{1}{2}\end{cases}
\end{aligned}
$$

Piecewise functions

unit step functions are useful to describe piecewise functions

Example:

we can describe the signal $x(t)$ by a single expression valid for all t :

$$
\begin{aligned}
x(t) & =\underbrace{2[u(t+1.5)-u(t)]}_{\text {constant part }}+\underbrace{2 e^{-t / 2}[u(t)-u(t-3)]}_{\text {exponential part }} \\
& =2 u(t+1.5)-2\left(1-e^{-t / 2}\right) u(t)-2 e^{-t / 2} u(t-3)
\end{aligned}
$$

Example 1.5

describe the signal $x(t)$ using the unit step function

Solution:

using line equation $x=m t+b$ and unit step functions, the signal can represented as an addition of two components:

$$
x_{1}(t)=t[u(t)-u(t-2)], \quad x_{2}(t)=-2(t-3)[u(t-2)-u(t-3)]
$$

therefore,

$$
x(t)=x_{1}(t)+x_{2}(t)=t u(t)-3(t-2) u(t-2)+2(t-3) u(t-3)
$$

Unit impulse

a (Dirac's) delta function $\delta(t)$ or unit impulse is an idealization of a signal that has unit area, very large near $t=0$, and very small otherwise

- other forms of approximation can be used such as triangular; the shape is not important but the area is important
- $\delta(t)$ satisfies the property:

$$
\delta(t)=0, \quad t \neq 0, \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(t) d t=1
$$

undefined at $t=0$ (not mathematically rigorous)

Properties of the impulse function

Product with impulse: for any function $g(t)$ continuous at t_{0}, we have

$$
g(t) \delta\left(t-t_{0}\right)=g\left(t_{0}\right) \delta\left(t-t_{0}\right)
$$

Sampling (sifting) property: a unit impulse satisfies

$$
\int_{t_{1}}^{t_{2}} g(t) \delta\left(t-t_{0}\right) d t=g\left(t_{0}\right) \quad t_{1}<t_{0}<t_{2}
$$

here, the impulse is defined as a generalized function (distribution), which is a function defined by its effect on other functions

Scaling property

$$
\delta\left(a\left(t-t_{0}\right)\right)=\frac{1}{|a|} \delta\left(t-t_{0}\right)
$$

Unit impulse and step relation

$$
\frac{d}{d t} u\left(t-t_{0}\right)=\delta\left(t-t_{0}\right) \quad \text { and } \quad u\left(t-t_{0}\right)=\int_{-\infty}^{t} \delta\left(\tau-t_{0}\right) d \tau
$$

Intuition

- $x(t) \rightarrow u(t)$ and $x^{\prime}(t) \rightarrow \delta(t)$ as $a \rightarrow 0$
- $\delta(t)\left(x^{\prime}(t)\right.$ as $\left.a \rightarrow 0\right)$ is called the generalized derivative of $u(t)$

The first derivative of the impulse function

(a) $x(t)$ is an impulse-generating function $(x(t) \rightarrow \delta(t)$ as $\epsilon \rightarrow 0)$
(b) $x^{\prime}(t)$ shows the derivative of this impulse-generating function, which is defined as the derivative of the impulse $\delta^{\prime}(t)$ as $\epsilon \rightarrow 0 ;\left(\delta^{\prime}(t)\right.$ is referred to as a moment function, or unit doublet)

Matlab example

the following Matlab code plots $y(t)=x\left(\frac{-t+3}{3}\right)-(3 / 4) x(t-1)$ over $-1.5 \leq t \leq 4.5$ where $x(t)=e^{-t} u(t)$

Matlab code

```
u = @(t) 1.0*(t>0);
x = @(t) exp(-t).*u(t); y = @(t) x((-t+3)/3)-3/4*x(t-1);
t = (-1.5:.0001:4.5); plot(t,y(t),'k');
xlabel('t'); ylabel('y(t)'); grid on;
```


Exercises

- show that
(a) $\left(t^{3}+3\right) \delta(t)=3 \delta(t)$
(b) $\left[\sin \left(t^{2}-\pi / 2\right)\right] \delta(t)=-\delta(t)$
(c) $e^{-2 t} \delta(t)=\delta(t)$
(d) $\frac{\omega^{2}+1}{\omega^{2}+9} \delta(\omega-1)=\frac{1}{5} \delta(\omega-1)$
- show that
(a) $\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=1$
(b) $\int_{-\infty}^{\infty} \delta(t-2) \cos \left(\frac{\pi t}{4}\right) d t=0$
(c) $\int_{-\infty}^{\infty} e^{-2(c-t)} \delta(2-t) d t=e^{-2(c-2)}$
- show that the signal

can be described as

$$
x(t)=(t-1) u(t-1)-(t-2) u(t-2)-u(t-4)
$$

Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

Even and odd signals

Even functions: an even function $x_{e}(t)$ is symmetrical about the vertical axis

$$
x_{e}(t)=x_{e}(-t)
$$

Odd functions: an odd function $x_{o}(t)$ is antisymmetrical about the vertical axis

$$
x_{o}(t)=-x_{o}(-t)
$$

Properties

multiplication properties

even function \times even function $=$ even function odd function \times odd function $=$ even function
even function \times odd function $=$ odd function
area

- for even functions

$$
\int_{-a}^{a} x_{e}(t) d t=2 \int_{0}^{a} x_{e}(t) d t
$$

- for odd function

$$
\int_{-a}^{a} x_{o}(t) d t=0
$$

(under the assumption that there is no impulse at the origin)

Even and odd components

every signal $x(t)$ can expressed as

$$
x(t)=\underbrace{\frac{1}{2}[x(t)+x(-t)]}_{\text {even part }}+\underbrace{\frac{1}{2}[x(t)-x(-t)]}_{\text {odd part }}
$$

Examples

- the even and odd components of $e^{j t}=x_{e}(t)+x_{o}(t)$ are

$$
x_{e}(t)=\frac{1}{2}\left[e^{j t}+e^{-j t}\right]=\cos t \quad x_{o}(t)=\frac{1}{2}\left[e^{j t}-e^{-j t}\right]=j \sin t
$$

- the signal $x(t)=e^{-a t} u(t)$ can be expressed as

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

where

$$
\begin{aligned}
& x_{e}(t)=\frac{1}{2}\left[e^{-a t} u(t)+e^{a t} u(-t)\right] \\
& x_{o}(t)=\frac{1}{2}\left[e^{-a t} u(t)-e^{a t} u(-t)\right]
\end{aligned}
$$

Complex signal decomposition

Conjugate-symmetric: a signal $x(t)$ is conjugate-symmetric or Hermitian if

$$
x(t)=x^{*}(-t)
$$

Conjugate-antisymmetric: a complex signal $x(t)$ is conjugate-antisymmetric or or skew Hermitian if

$$
x(t)=-x^{*}(-t)
$$

- conjugate-symmetric signals have even real part and odd imaginary part
- conjugate-antisymmetric signals have odd real part and even imaginary part
any signal $x(t)$ can be decomposed into

$$
x(t)=x_{\mathrm{cs}}(t)+x_{\mathrm{ca}}(t)
$$

- $x_{\mathrm{CS}}(t)=\frac{1}{2}\left(x(t)+x^{*}(-t)\right)$ is the conjugate-symmetric part
- $x_{\mathrm{ca}}(t)=\frac{1}{2}\left(x(t)-x^{*}(-t)\right)$ is the conjugate-antisymmetric part

Exercise

determine the conjugate-symmetric and conjugate-antisymmetric portions of the following signals:
(a) $x_{a}(t)=e^{j t}$
(b) $x_{b}(t)=j e^{j t}$
(c) $x_{c}(t)=\sqrt{2} e^{j(t+\pi / 4)}$

Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

Signal energy and power

Energy of a signal

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

- finite if $|x(t)| \rightarrow 0$ as $|t| \rightarrow \infty$
- infinite otherwise
(average) Power of a signal

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

- P_{x} is the time average (mean) of $|x(t)|^{2}$
- $\sqrt{P_{x}}$ is the $r m s$ (root-mean-square) value of $x(t)$

Energy and power signals

an energy signal is a signal with finite energy
a power signal is a signal with finite and nonzero power

- an energy signal has zero power
- a power signal has infinite energy
- some signals are neither energy nor power signals

Power of periodic signals: a periodic signal $x(t)$ with period T_{0} has power

$$
P_{x}=\frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t=\frac{1}{T_{0}} \int_{a_{0}}^{a_{0}+T_{0}}|x(t)|^{2} d t
$$

(not all power signals are periodic)

Example 1.6

determine whether the signals below are energy or power signals and find their energy/power

(a)

(b)

Solution:

(a) $|x(t)|$ goes to zero as $|t| \rightarrow \infty$, hence it is an energy signal

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-1}^{0} 4 d t+\int_{0}^{\infty} 4 e^{-t} d t=4+4=8
$$

and $P_{x}=0$
(b) $|x(t)|$ does not go to zero as $|t| \rightarrow \infty$, but it is periodic with period $T_{0}=2$, hence it is a power signal with power

$$
\begin{aligned}
P_{x} & =\frac{1}{T_{0}} \int_{a_{0}}^{a_{0}+T_{0}}|x(t)|^{2} d t \\
& =\frac{1}{2} \int_{-1}^{1}|x(t)|^{2} d t=\frac{1}{2} \int_{-1}^{1} t^{2} d t=\frac{1}{3}
\end{aligned}
$$

the rms value of this signal is $1 / \sqrt{3}$ and $E_{x}=\infty$

Example 1.7

determine the power and rms value of
(a) $x(t)=A \cos \left(\omega_{0} t+\theta\right)$
(b) $x(t)=A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right), \omega_{1} \neq \omega_{2}$
(c) $x(t)=D e^{j \omega_{0} t}$

Solution:

(a) the power is

$$
\begin{aligned}
P_{x} & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} A^{2} \cos ^{2}\left(\omega_{0} t+\theta\right) d t \\
& =\lim _{T \rightarrow \infty} \frac{A^{2}}{2 T} \int_{-T / 2}^{T / 2}\left[1+\cos \left(2 \omega_{0} t+2 \theta\right)\right] d t=\frac{A^{2}}{2}+0=\frac{A^{2}}{2}
\end{aligned}
$$

- the zero term is because integral over a sinusoid is at most the area over half the cycle; thus dividing by T and letting $T \rightarrow \infty$ gives zero
- we can also integrate over the period $T_{0}=2 \pi / \omega_{0}$:

$$
\begin{aligned}
P_{x} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} A^{2} \cos ^{2}\left(\omega_{0} t+\theta\right) d t \\
& =\frac{A^{2}}{2 T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2}\left[1+\cos \left(2 \omega_{0} t+2 \theta\right)\right] d t=\frac{A^{2}}{2}+0=\frac{A^{2}}{2}
\end{aligned}
$$

(second term is zero because the integration of a sinusoid over a period is zero)

- the rms value is $A / \sqrt{2}$
(b)

$$
\begin{aligned}
P_{x}= & \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left[A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)\right]^{2} d t \\
= & \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} A_{1}^{2} \cos ^{2}\left(\omega_{1} t+\theta_{1}\right) d t+\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} A_{2}^{2} \cos ^{2}\left(\omega_{2} t+\theta_{2}\right) d t \\
& +\lim _{T \rightarrow \infty} \frac{2 A_{1} A_{2}}{T} \int_{-T / 2}^{T / 2} \cos \left(\omega_{1} t+\theta_{1}\right) \cos \left(\omega_{2} t+\theta_{2}\right) d t=\frac{A_{1}^{2}}{2}+\frac{A_{2}^{2}}{2}
\end{aligned}
$$

where the third term is zero since

$$
\begin{aligned}
& \cos \left(\omega_{1} t+\theta_{1}\right) \cos \left(\omega_{2} t+\theta_{2}\right) \\
& =\cos \left(\left(\omega_{1}+\omega_{2}\right) t+\theta_{1}+\theta_{2}\right)+\cos \left(\left(\omega_{1}-\omega_{2}\right) t+\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

and the integral over a sinusoid is zero
(c)

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|D e^{j \omega_{0} t}\right|^{2} d t=\lim _{T \rightarrow \infty} \frac{|D|^{2}}{T} \int_{-T / 2}^{T / 2} d t=|D|^{2}
$$

Power of sum of sinusoids

- the power of

$$
x(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\omega_{n} t+\theta_{n}\right)
$$

with distinct frequencies and $\omega_{n} \neq 0$ is

$$
P_{x}=A_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}
$$

- the power of

$$
x(t)=\sum_{k=m}^{n} D_{k} e^{j \omega_{k} t}
$$

with distinct frequencies is

$$
P_{x}=\sum_{k=m}^{n}\left|D_{k}\right|^{2}
$$

Proof:

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x^{*}(t) d t=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} \sum_{k=m}^{n} \sum_{\ell=m}^{n} D_{k} D_{\ell}^{*} e^{\left(j \omega_{k}-\omega_{\ell}\right) t} d t
$$

the integrals of the cross-product terms (when $k \neq \ell$) are finite because the integrands are periodic signals (made up of sinusoids); these terms, when divided by $T \rightarrow \infty$, yield zero; the remaining terms ($k=\ell$) yield

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} \sum_{k=m}^{n}\left|D_{k}\right|^{2} d t=\sum_{k=m}^{n}\left|D_{k}\right|^{2}
$$

Remarks

- in signal processing, when approximating a signal $x(t)$ by another signal $g(t)$, the error is defined as $e(t)=x(t)-g(t)$; the energy (or power) of $e(t)$ serves as a measure of the approximation's quality.
- in communication systems, message signals can be corrupted by noise during transmission; the quality of the received signal is assessed by the signal-to-noise power ratio
- the units of energy and power vary based on the signal type:
- for a voltage signal $x(t)$, the energy E_{x} has units of volts squared-seconds ($\mathrm{V}^{2} \mathrm{~s}$), and the power P_{x} has units of volts squared
- for a current signal $x(t)$, the units are amperes squared-seconds $\left(\mathrm{A}^{2} \mathrm{~s}\right)$ for energy and amperes squared for power

Matlab example

use Matlab to approximate the energy of $x(t)=e^{-t} \cos (2 \pi t) u(t)$

```
x = @(t) e^(-t).*\operatorname{cos(2 *pi *t).*u(t);}
x_squared = @(t) x(t).*x(t);
t = (0:0.001:100);
Ex = sum(x_squared(t)*0.001)
```

[output: Ex $=0.2567$]
a better approximation can be obtained with the quad function
Ex = quad (x_squared, 0,100)
[output: Ex $=0.2562$]
Exercise: use Matlab to confirm that the energy of signal $y(t)=x(2 t+1)+x(-t+1)$ is $E_{y}=0.3768$

Exercises

- show that the energies of the signals in figure (a), (b), (c), and (d) are 4, 1, $4 / 3$, and $4 / 3$, respectively; show also that the power of the signal in (e) is 0.4323 ; what is the rms value of signal in figure (e)?

(e)
- find the energy of $2 \operatorname{rect}(t / 2)$
- show that the energy of $\sin (2 \pi t) \operatorname{rect}(t / 2)$ is $E_{x}=1 / 2$
- show that an everlasting exponential $e^{a t}$ is neither an energy nor a power signal for any real value of a; however, if a is imaginary, it is a power signal with power $P_{x}=1$ regardless of the value of a
- show that the power of the unit step $u(t)$ is $P_{u}=1 / 2$
- show that if $\omega_{1}=\omega_{2}$, then the power of

$$
x(t)=A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)
$$

is $\left[A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right] / 2$

References

- B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 1 (1.1-1.5)
- M. J. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB, McGraw Hill, chapter 2

