# 1. Continuous-time signals

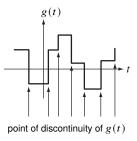
- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

## **Continuous-time signal**

a continuous-time (CT) signal is a function x(t) defined at every time t

- voltage, current, audio signals
- light intensity variations in an optical fiber
- position or velocity of moving object

a continuous-time function is not the same as continuous function



## Sinusoids and exponentials

Sinusoids

$$x(t) = A\cos(2\pi f t + \theta)$$

- f is the (cyclic) frequency (in Hertz); T = 1/f is the period
- A is the *amplitude* and  $\theta$  is the *phase* (in degrees or radians):
- $\omega = 2\pi f = 2\pi/T$  is the radian frequency

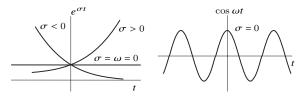
#### Exponentials

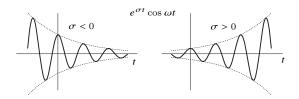
$$x(t) = Ae^{st} = Ae^{(\sigma+j\omega)t} = Ae^{\sigma t} (\cos \omega t + j\sin \omega t)$$

- $s = \sigma + j\omega$  is called *complex frequency*
- $|\omega|$  is called *radian frequency* or frequency of oscillation
- $\sigma$  is the *decay rate* or *neper frequency*

several functions can be expressed in terms of  $e^{st}$ :

- constant:  $k = ke^{0t}$  (s = 0)
- monotonic exponential:  $e^{\sigma t}$  ( $\omega = 0$ )
- sinusoid:  $\cos \omega t = \operatorname{Re}(e^{\pm j\omega t})$  ( $\sigma = 0, \ \omega = \pm j\omega$ )
- exponentially varying sinusoid:  $e^{\sigma t} \cos \omega t$  ( $s = \sigma \pm j\omega$ )



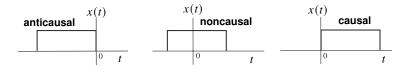


## **Causal signals**

a signal x(t) is *causal* if

$$x(t) = 0 \quad \text{for } t < 0$$

- causal signals do not start before t = 0
- a signal that starts before t = 0 is called *noncausal*
- a signal x(t) is *anticausal* if  $x(t) = 0, t \ge 0$
- a signal that exists over  $-\infty < t < \infty$  is called *everlasting signal*



### Periodic and aperiodic signals

a signal x(t) is *periodic* if for some positive constant T

x(t) = x(t+T), for all t

- smallest T is called fundamental period of x(t), denoted by  $T_0$
- $f_0 = 1/T_0$  is cyclic frequency;  $\omega_0 = 2\pi f_0$  is radian frequency
- a periodic signal must be an everlasting signal
- areas under x(t) over any interval of duration  $T_0$  are equal

$$\int_{a}^{a+T_{0}} x(t) dt = \int_{b}^{b+T_{0}} x(t) dt \triangleq \int_{T_{0}} x(t) dt$$

• a signal is *aperiodic* if it is not periodic

## Sum of periodic signals

 $x(t) = x_1(t) + x_2(t)$ 

- $x_1(t)$  and  $x_2(t)$  are is periodic with periods  $T_{01}$  and  $T_{02}$
- *x*(*t*) is periodic with period *T* if there exists a time *T* that is an integer multiple of both *T*<sub>01</sub> and *T*<sub>02</sub>:

$$qT_{01} = pT_{02}$$

**Fundamental period:** the fundamental period  $T_0$  of x(t) is the *least common multiple* (LCM) of  $T_{01}$ ,  $T_{02}$ 

- if  $T_{01}/T_{02}$  is a rational number, then x(t) is periodic; otherwise, it is aperiodic
- if  $T_{01}/T_{02} = p_0/q_0$  for some integers  $p_0$  and  $q_0$  in smallest form, then

$$T_0 = \mathsf{LCM}(T_{01}, T_{02}) = q_0 T_{01} = p_0 T_{02}$$

## Example 1.1

- the function  $x(t) = 3 + t^2$  is aperiodic
- the function  $x(t) = e^{-j60\pi t}$  can be expressed as

$$x(t) = \cos(60\pi t) - j\sin(60\pi t)$$

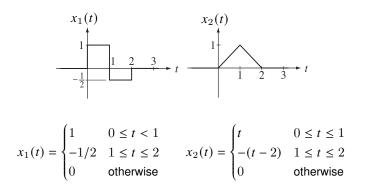
which is a sum of two periodic signals that have the same fundamental period  $T_{01} = T_{02} = 2\pi/60\pi = 1/30$ ; thus, the fundamental period  $T_0 = 1/30$  s

- the function  $x(t) = 10 \sin(12\pi t) + 4 \cos(18\pi t)$  is the sum of two periodic functions with  $T_{01} = 1/6$  second and  $T_{02} = 1/9$  second; we have  $T_{01}/T_{02} = 9/6 = 3/2$  and the  $T_0 = \text{LCM}(1/6, 1/9) = 1/3$
- the function  $x(t) = 10 \sin(12\pi t) + 4 \cos(18t)$  is the sum of two periodic functions with  $T_{01} = 1/6$  second and  $T_{02} = \pi/9$  seconds; the ratio of the two fundamental periods is  $2\pi/3$  irrational; therefore x(t) is aperiodic

## **Piecewise signals**

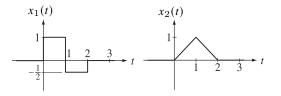
a piecewise signal is a function with different expressions over different intervals

#### Example

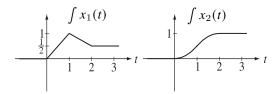


## **Exercises**

find and sketch  $\int_{-\infty}^{t} x_1(\tau) d\tau$  and  $\int_{-\infty}^{t} x_2(\tau) d\tau$  for the signals  $x_1(t)$  and  $x_2(t)$ 



Answer:

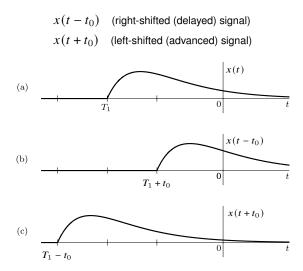


## Outline

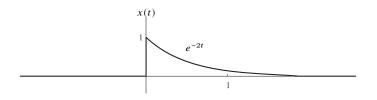
- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

## **Time shifting**

x(t) can be shifted to the right or left by  $t_0 > 0$  seconds:



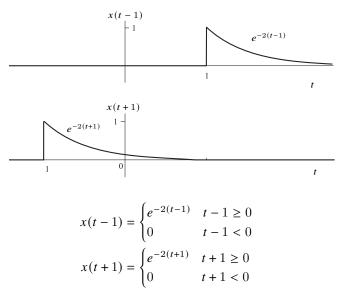
## Example 1.2



$$x(t) = \begin{cases} e^{-2t} & t \ge 0\\ 0 & t < 0 \end{cases}$$

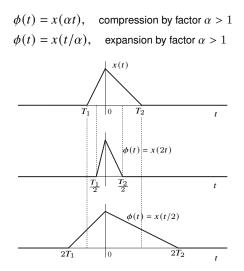
sketch and mathematically describe the function x(t) delayed by 1 second and advanced by 1 second

#### Solution:

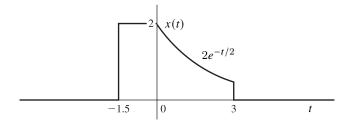


## **Time scaling**

time scaling is the compression or expansion of a signal in time:



## Example 1.3



sketch and mathematically describe the signal x(t) time-compressed by factor 3; repeat the problem for the same signal time-expanded by factor 2

#### Solution:

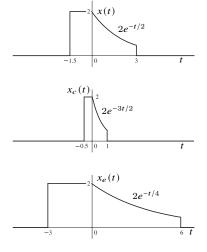
$$x(t) = \begin{cases} 2 & -1.5 \le t < 0\\ 2e^{-t/2} & 0 \le t < 3\\ 0 & \text{otherwise} \end{cases}$$

compressed-signal

$$x_c(t) = x(3t) = \begin{cases} 2 & -1.5 \le 3t < 0\\ 2e^{-3t/2} & 0 \le 3t < 3\\ 0 & \text{otherwise} \end{cases}$$

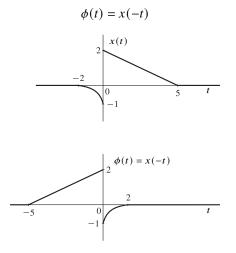


$$x_e(t) = x(t/2) = \begin{cases} 2 & -1.5 \le t/2 < 0\\ 2e^{-t/4} & 0 \le t/2 < 3\\ 0 & \text{otherwise} \end{cases}$$

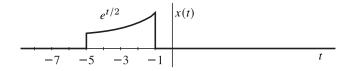


## **Time reversal**

time-reversal is the reflection about the vertical axis

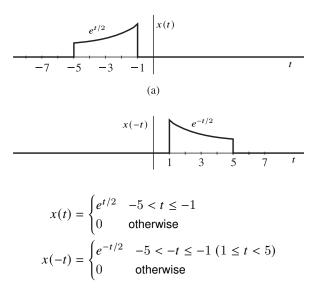


## Example 1.4



sketch and mathematically describe x(-t)

#### Solution:



## **Combined operations**

$$x(\alpha t - t_0) = x\left(\alpha \left[t - \frac{t_0}{\alpha}\right]\right)$$

1. time shift, then time scale the shifted signal

$$x(t) \xrightarrow{\text{time shift by } t_0} x(t-t_0) \xrightarrow{\text{time scale by } \alpha} x(\alpha t-t_0)$$

2. time scale, then time shift

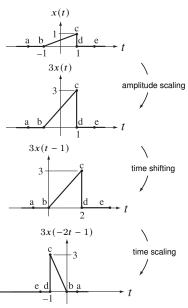
$$x(t) \xrightarrow{\text{time scale by } \alpha} x(\alpha t) \xrightarrow{\text{time shift by } t_0/\alpha} x(\alpha t - t_0)$$

Other form

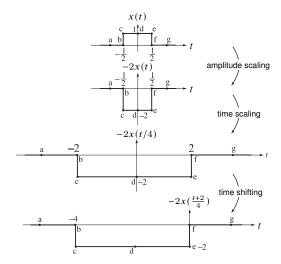
$$x\left(\frac{t-t_0}{\alpha}\right)$$

$$x(t) \xrightarrow{\text{time scale by } 1/\alpha} x(t/\alpha) \xrightarrow{\text{time shift by } t_0} x\left(\frac{t-t_0}{\alpha}\right)$$

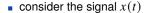
**Example:** find 3x(-2t-1) from x(t)

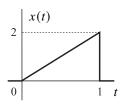


**Example:** find  $-2x(\frac{t+2}{4})$  from x(t)

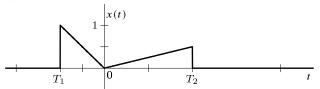


### **Exercises**





- (a) sketch x(t-2) and show it can be described mathematically as  $x_d(t) = 2(t-2)$  for  $2 \le t \le 3$ , and equal to 0 otherwise
- (b) sketch x(t + 1) and show that it can be described as  $x_a(t) = 2(t + 1)$  for  $-1 \le t \le 0$ , and 0 otherwise
- sketch y(t) = x(-3t 4) for the signal x(t) shown with  $T_1 = 2$  and  $T_2 = 4$



## Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

## **Unit step**



u(t) is sometimes defined as

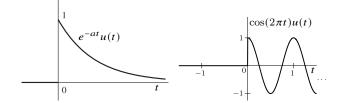
$$u(t) = \begin{cases} 1 & t > 0\\ 0.5 & t = 0\\ 0, & t < 0 \end{cases}$$

which is convenient from a theoretical signals and systems perspective

for real-world signals applications however, it makes no practical difference

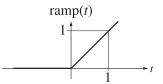
unit-step is useful to describe causal signals

•  $e^{-at}u(t)$  is zero for t < 0 and  $e^{-at}$  for  $t \ge 0$ ; similarly for  $\cos(2\pi t)u(t)$ 



Unit ramp:

$$\operatorname{ramp}(t) = \begin{cases} t & t > 0\\ 0, & t \le 0 \end{cases}$$
$$= \int_{-\infty}^{t} u(\tau) d\tau = t u(t)$$



**Shifted step:** a step function equal to *K* that occurs at t = a is expressed as

$$Ku(t-a) = \begin{cases} 0, & t < a \\ K, & t > a \end{cases}$$

**Shifted and reversed step:** a step equal to *K* for t < a is written as

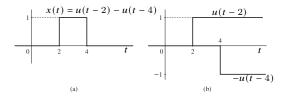
$$Ku(a-t) = \begin{cases} K, & t < a \\ 0, & t > a \end{cases} \qquad \qquad \underbrace{ \begin{array}{c} K \\ Ku(a-t) \\ \hline \\ 0 \\ a \end{array}}_{t > a}$$

## **Rectangular pulse**

a rectangular pulse from  $t_1$  to  $t_2$  can be represented as  $u(t - t_1) - u(t - t_2)$ 

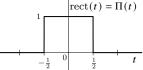
#### Examples:

 $\hfill\blacksquare$  rectangular pulse from 2 to 4



• the unit rectangle (unit gate) is defined as

$$\begin{aligned} \operatorname{rect}(t) &= \Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2}) \\ &= \begin{cases} 1 & |t| < \frac{1}{2} \\ 0, & |t| \geq \frac{1}{2} \end{cases} \end{aligned}$$

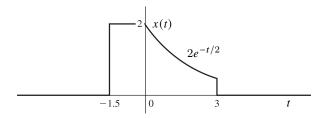


useful CT signals

## **Piecewise functions**

unit step functions are useful to describe piecewise functions

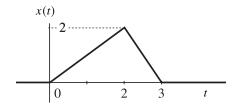
Example:



we can describe the signal x(t) by a single expression valid for all t:

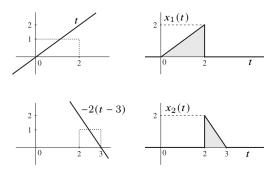
$$x(t) = \underbrace{2[u(t+1.5) - u(t)]}_{\text{constant part}} + \underbrace{2e^{-t/2}[u(t) - u(t-3)]}_{\text{exponential part}}$$
  
=  $2u(t+1.5) - 2(1 - e^{-t/2})u(t) - 2e^{-t/2}u(t-3)$ 

## Example 1.5



describe the signal x(t) using the unit step function

#### Solution:



using line equation x = mt + b and unit step functions, the signal can represented as an addition of two components:

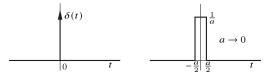
$$x_1(t) = t[u(t) - u(t-2)], \qquad x_2(t) = -2(t-3)[u(t-2) - u(t-3)]$$

therefore,

$$x(t) = x_1(t) + x_2(t) = tu(t) - 3(t-2)u(t-2) + 2(t-3)u(t-3)$$

## Unit impulse

a (Dirac's) *delta function*  $\delta(t)$  or unit *impulse* is an idealization of a signal that has unit area, very large near t = 0, and very small otherwise



- other forms of approximation can be used such as triangular; the shape is not important but the area is important
- $\delta(t)$  satisfies the property:

$$\delta(t) = 0, \quad t \neq 0, \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(t) dt = 1$$

undefined at t = 0 (not mathematically rigorous)

### Properties of the impulse function

**Product with impulse:** for any function g(t) continuous at  $t_0$ , we have

$$g(t)\delta(t-t_0) = g(t_0)\delta(t-t_0)$$

Sampling (sifting) property: a unit impulse satisfies

$$\int_{t_1}^{t_2} g(t)\delta(t-t_0)dt = g(t_0) \qquad t_1 < t_0 < t_2$$

here, the impulse is defined as a *generalized function* (distribution), which is a function defined by its effect on other functions

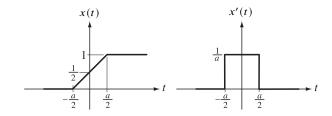
#### Scaling property

$$\delta(a(t-t_0)) = \frac{1}{|a|}\delta(t-t_0)$$

## Unit impulse and step relation

$$\frac{d}{dt}u(t-t_0) = \delta(t-t_0) \quad \text{and} \quad u(t-t_0) = \int_{-\infty}^t \delta(\tau-t_0)d\tau$$

Intuition

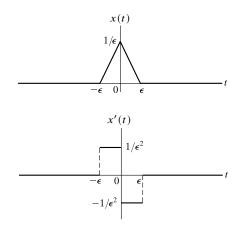


• 
$$x(t) \rightarrow u(t)$$
 and  $x'(t) \rightarrow \delta(t)$  as  $a \rightarrow 0$ 

•  $\delta(t) (x'(t) \text{ as } a \to 0)$  is called the *generalized derivative* of u(t)

#### useful CT signals

## The first derivative of the impulse function

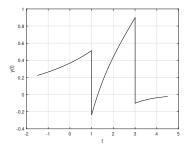


- (a) x(t) is an impulse-generating function  $(x(t) \rightarrow \delta(t) \text{ as } \epsilon \rightarrow 0)$
- (b) x'(t) shows the derivative of this impulse-generating function, which is defined as the derivative of the impulse  $\delta'(t)$  as  $\epsilon \to 0$ ; ( $\delta'(t)$  is referred to as a moment function, or unit doublet)

### Matlab example

the following Matlab code plots  $y(t) = x(\frac{-t+3}{3}) - (3/4)x(t-1)$  over  $-1.5 \le t \le 4.5$  where  $x(t) = e^{-t}u(t)$ 

### Matlab code



# **Exercises**

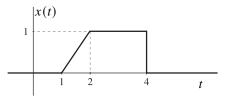
### show that

(a) 
$$(t^3 + 3)\delta(t) = 3\delta(t)$$
  
(b)  $[\sin(t^2 - \pi/2)]\delta(t) = -\delta(t)$   
(c)  $e^{-2t}\delta(t) = \delta(t)$   
(d)  $\frac{\omega^2 + 1}{\omega^2 + 9}\delta(\omega - 1) = \frac{1}{5}\delta(\omega - 1)$ 

show that

(a) 
$$\int_{-\infty}^{\infty} \delta(t)e^{-j\omega t} dt = 1$$
  
(b) 
$$\int_{-\infty}^{\infty} \delta(t-2)\cos(\frac{\pi t}{4}) dt = 0$$
  
(c) 
$$\int_{-\infty}^{\infty} e^{-2(c-t)}\delta(2-t) dt = e^{-2(c-2)}$$

show that the signal



can be described as

$$x(t) = (t-1)u(t-1) - (t-2)u(t-2) - u(t-4)$$

# Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

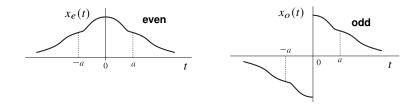
# Even and odd signals

**Even functions:** an *even function*  $x_e(t)$  is symmetrical about the vertical axis

 $x_e(t) = x_e(-t)$ 

**Odd functions:** an *odd function*  $x_o(t)$  is antisymmetrical about the vertical axis

$$x_o(t) = -x_o(-t)$$



# **Properties**

#### multiplication properties

even function  $\times$  even function = even function odd function  $\times$  odd function = even function even function  $\times$  odd function = odd function

#### area

for even functions

$$\int_{-a}^{a} x_e(t)dt = 2\int_{0}^{a} x_e(t)dt$$

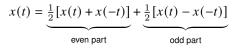
for odd function

$$\int_{-a}^{a} x_o(t) dt = 0$$

(under the assumption that there is no impulse at the origin)

## Even and odd components

every signal x(t) can expressed as



#### Examples

• the even and odd components of  $e^{jt} = x_e(t) + x_o(t)$  are

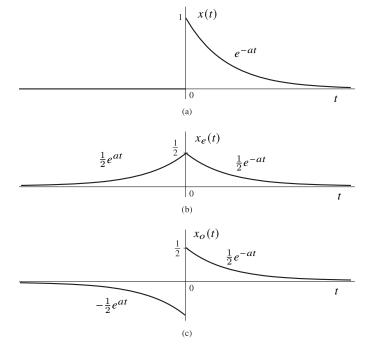
$$x_e(t) = \frac{1}{2} [e^{jt} + e^{-jt}] = \cos t \qquad x_o(t) = \frac{1}{2} [e^{jt} - e^{-jt}] = j \sin t$$

• the signal  $x(t) = e^{-at}u(t)$  can be expressed as

$$x(t) = x_e(t) + x_o(t)$$

where

$$\begin{aligned} x_e(t) &= \frac{1}{2} \left[ e^{-at} u(t) + e^{at} u(-t) \right] \\ x_o(t) &= \frac{1}{2} \left[ e^{-at} u(t) - e^{at} u(-t) \right] \end{aligned}$$



## **Complex signal decomposition**

**Conjugate-symmetric:** a signal x(t) is *conjugate-symmetric* or *Hermitian* if

$$x(t) = x^*(-t)$$

**Conjugate-antisymmetric:** a complex signal x(t) is *conjugate-antisymmetric* or or *skew Hermitian* if

$$x(t) = -x^*(-t)$$

- conjugate-symmetric signals have even real part and odd imaginary part
- conjugate-antisymmetric signals have odd real part and even imaginary part

any signal x(t) can be decomposed into

$$x(t) = x_{\rm cs}(t) + x_{\rm ca}(t)$$

- $x_{cs}(t) = \frac{1}{2}(x(t) + x^*(-t))$  is the conjugate-symmetric part
- $x_{ca}(t) = \frac{1}{2}(x(t) x^*(-t))$  is the conjugate-antisymmetric part

### **Exercise**

determine the conjugate-symmetric and conjugate-antisymmetric portions of the following signals:

(a)  $x_a(t) = e^{jt}$ (b)  $x_b(t) = je^{jt}$ (c)  $x_c(t) = \sqrt{2}e^{j(t+\pi/4)}$ 

# Outline

- continuous-time signals
- signal operations
- useful CT signals
- even and odd signals
- signal energy and power

# Signal energy and power

Energy of a signal

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

• finite if 
$$|x(t)| \to 0$$
 as  $|t| \to \infty$ 

infinite otherwise

(average) Power of a signal

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt$$

- $P_x$  is the time average (mean) of  $|x(t)|^2$
- $\sqrt{P_x}$  is the *rms* (root-mean-square) value of x(t)

## **Energy and power signals**

an energy signal is a signal with finite energy

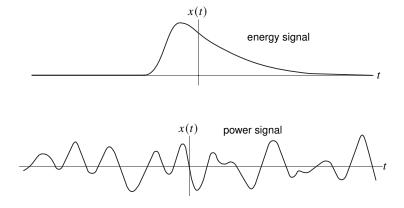
a power signal is a signal with finite and nonzero power

- an energy signal has zero power
- a power signal has infinite energy
- some signals are neither energy nor power signals

**Power of periodic signals:** a periodic signal x(t) with period  $T_0$  has power

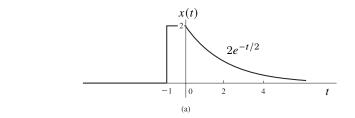
$$P_x = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \frac{1}{T_0} \int_{a_0}^{a_0 + T_0} |x(t)|^2 dt$$

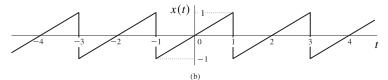
(not all power signals are periodic)



# Example 1.6

determine whether the signals below are energy or power signals and find their energy/power





signal energy and power

#### Solution:

(a) |x(t)| goes to zero as  $|t| \to \infty$ , hence it is an energy signal

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-1}^{0} 4dt + \int_{0}^{\infty} 4e^{-t} dt = 4 + 4 = 8$$

and  $P_x = 0$ 

(b) |x(t)| does not go to zero as  $|t| \rightarrow \infty$ , but it is periodic with period  $T_0 = 2$ , hence it is a power signal with power

$$P_x = \frac{1}{T_0} \int_{a_0}^{a_0 + T_0} |x(t)|^2 dt$$
$$= \frac{1}{2} \int_{-1}^{1} |x(t)|^2 dt = \frac{1}{2} \int_{-1}^{1} t^2 dt = \frac{1}{3}$$

the rms value of this signal is  $1/\sqrt{3}$  and  $E_x = \infty$ 

# Example 1.7

determine the power and rms value of

(a) 
$$x(t) = A \cos(\omega_0 t + \theta)$$
  
(b)  $x(t) = A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2), \omega_1 \neq \omega_2$   
(c)  $x(t) = De^{j\omega_0 t}$ 

### Solution:

(a) the power is

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A^2 \cos^2(\omega_0 t + \theta) dt$$
$$= \lim_{T \to \infty} \frac{A^2}{2T} \int_{-T/2}^{T/2} [1 + \cos(2\omega_0 t + 2\theta)] dt = \frac{A^2}{2} + 0 = \frac{A^2}{2}$$

- the zero term is because integral over a sinusoid is at most the area over half the cycle; thus dividing by T and letting  $T \to \infty$  gives zero
- we can also integrate over the period  $T_0 = 2\pi/\omega_0$ :

$$\begin{split} P_x &= \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} A^2 \cos^2(\omega_0 t + \theta) dt \\ &= \frac{A^2}{2T_0} \int_{-T_0/2}^{T_0/2} [1 + \cos(2\omega_0 t + 2\theta)] dt = \frac{A^2}{2} + 0 = \frac{A^2}{2} \end{split}$$

(second term is zero because the integration of a sinusoid over a period is zero) - the rms value is  $A/\sqrt{2}$ 

signal energy and power

$$\begin{split} P_x &= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[ A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2) \right]^2 dt \\ &= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A_1^2 \cos^2(\omega_1 t + \theta_1) dt + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A_2^2 \cos^2(\omega_2 t + \theta_2) dt \\ &+ \lim_{T \to \infty} \frac{2A_1 A_2}{T} \int_{-T/2}^{T/2} \cos(\omega_1 t + \theta_1) \cos(\omega_2 t + \theta_2) dt = \frac{A_1^2}{2} + \frac{A_2^2}{2} \end{split}$$

where the third term is zero since

$$\begin{aligned} \cos(\omega_1 t + \theta_1) \cos(\omega_2 t + \theta_2) \\ &= \cos((\omega_1 + \omega_2)t + \theta_1 + \theta_2) + \cos((\omega_1 - \omega_2)t + \theta_1 - \theta_2) \end{aligned}$$

and the integral over a sinusoid is zero

(C)

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |De^{j\omega_0 t}|^2 dt = \lim_{T \to \infty} \frac{|D|^2}{T} \int_{-T/2}^{T/2} dt = |D|^2$$

signal energy and power

## Power of sum of sinusoids

the power of

$$x(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(\omega_n t + \theta_n)$$

with *distinct* frequencies and  $\omega_n \neq 0$  is

$$P_x = A_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} A_n^2$$

the power of

$$x(t) = \sum_{k=m}^{n} D_k e^{j\omega_k t}$$

with distinct frequencies is

$$P_x = \sum_{k=m}^n |D_k|^2$$

Proof:

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k=m}^n \sum_{\ell=m}^n D_k D_\ell^* e^{(j\omega_k - \omega_\ell)t} dt$$

the integrals of the cross-product terms (when  $k \neq \ell$ ) are finite because the integrands are periodic signals (made up of sinusoids); these terms, when divided by  $T \rightarrow \infty$ , yield zero; the remaining terms ( $k = \ell$ ) yield

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k=m}^n |D_k|^2 dt = \sum_{k=m}^n |D_k|^2$$

# Remarks

- in signal processing, when approximating a signal x(t) by another signal g(t), the error is defined as e(t) = x(t) g(t); the energy (or power) of e(t) serves as a measure of the approximation's quality.
- in communication systems, message signals can be corrupted by noise during transmission; the quality of the received signal is assessed by the signal-to-noise power ratio
- the units of energy and power vary based on the signal type:
  - for a voltage signal x(t), the energy  $E_x$  has units of volts squared-seconds  $(V^2s)$ , and the power  $P_x$  has units of volts squared
  - for a current signal x(t), the units are amperes squared-seconds (A<sup>2</sup>s) for energy and amperes squared for power

## Matlab example

use Matlab to approximate the energy of  $x(t) = e^{-t} \cos(2\pi t)u(t)$ 

```
x = @(t) e^(-t).*cos(2 *pi *t).*u(t);
x_squared = @(t) x(t).*x(t);
t = (0:0.001:100);
Ex = sum(x_squared(t)*0.001)
```

```
[output: Ex = 0.2567]
```

a better approximation can be obtained with the quad function

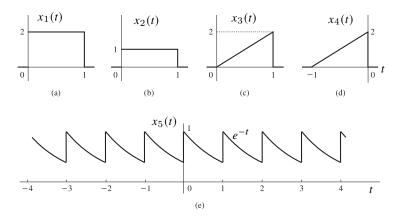
```
Ex = quad(x_squared, 0, 100)
```

[output: Ex = 0.2562]

**Exercise:** use Matlab to confirm that the energy of signal y(t) = x(2t+1) + x(-t+1) is  $E_y = 0.3768$ 

## **Exercises**

show that the energies of the signals in figure (a), (b), (c), and (d) are 4, 1, 4/3, and 4/3, respectively; show also that the power of the signal in (e) is 0.4323; what is the rms value of signal in figure (e)?



- find the energy of  $2 \operatorname{rect}(t/2)$
- show that the energy of  $sin(2\pi t) rect(t/2)$  is  $E_x = 1/2$
- show that an everlasting exponential  $e^{at}$  is neither an energy nor a power signal for any real value of *a*; however, if *a* is imaginary, it is a power signal with power  $P_x = 1$  regardless of the value of *a*
- show that the power of the unit step u(t) is  $P_u = 1/2$
- show that if  $\omega_1 = \omega_2$ , then the power of

$$x(t) = A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2)$$

is 
$$[A_1^2 + A_2^2 + 2A_1A_2\cos(\theta_1 - \theta_2)]/2$$

## References

- B.P. Lathi, Linear Systems and Signals, Oxford University Press, chapter 1 (1.1-1.5)
- M. J. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB, McGraw Hill, chapter 2