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• state equations from transfer function

• Laplace transform solution of state equations

• state-equations of discrete-time systems
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11.1



External and internal descriptions

External description: a description that can be obtained from measurements at the
external terminals

■ the input-output description is an external description

■ may not provide complete information about all signals in the systems

Internal description: an internal description is capable of providing complete
information about all possible signals in the system

■ an external description can always be found from an internal description

■ the converse is not necessarily true
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Example: external description

output 𝑦(𝑡) will depend on input 𝑥(𝑡) and initial charge 𝑄0 on the capacitor
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■ zero-input response: when 𝑥(𝑡) = 0 (short input)
– currents in two 2Ω resistors at output terminals are equal and opposite

– this is because of the balanced nature of the circuit

– hence, 𝑦(𝑡) = 0

■ zero-state response: when 𝑄0 = 0 (short capacitor)
– the current divides equally between branches

– voltage across capacitor continues to remain zero and we get the equiv. circuit on right

𝑦(𝑡) = 2𝑖(𝑡) = 2

5
𝑥(𝑡)

■ the total response 𝑦(𝑡) = 2
5𝑥(𝑡)

– gives the external description

– no external measurement can detect the presence of the capacitor
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Example: state-space internal description

consider the 𝑅𝐿 network shown with an initial current of 𝑖(0)

■ we select the current 𝑖(𝑡) as our variable

■ we write the loop equation,

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑣(𝑡)

■ solving gives:

𝑖(𝑡) = 1

𝑅

(
1 − 𝑒−(𝑅/𝐿)𝑡

)
+ 𝑖(0)𝑒−(𝑅/𝐿)𝑡
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■ we can find all other variables algebraically in terms of 𝑖(𝑡) and the input voltage:

𝑣𝑅 (𝑡) = 𝑅𝑖(𝑡) (output equation 1)

𝑣𝐿 (𝑡) = 𝑣(𝑡) − 𝑅𝑖(𝑡) (output equation 2)

knowing the state variable, 𝑖(𝑡), and the input, 𝑣(𝑡), we can find the value, or
state, of any network variable at any time, 𝑡 ≥ 𝑡0

■ these combined equations form a viable representation of the network, which we
call a state-space representation

𝑑𝑖

𝑑𝑡
= −𝑅

𝐿
𝑖(𝑡) + 1

𝐿
𝑣(𝑡) (state equation)

𝑣𝑅 (𝑡) = 𝑅𝑖(𝑡) (output equation 1)

𝑣𝐿 (𝑡) = 𝑣(𝑡) − 𝑅𝑖(𝑡) (output equation 2)
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State-space description

State variables: any variables 𝑞1 (𝑡), . . . , 𝑞𝑁 (𝑡) such that we can determine all
signals in the system for 𝑡 ≥ 𝑡0, given the input(s) for 𝑡 ≥ 𝑡0 and i.c. 𝑞𝑘 (𝑡0)

■ output at 𝑡 is determined completely from the states and input at 𝑡

■ state variables are not unique

State-space description: the state-space description is an internal description
where all signals in the system are expressed using state variables

■ the equations relating all state variables are called state equations

■ for input-output description, an 𝑁 th-order differential system is described by an
𝑁 th-order equation; in the state-variable approach, the same system can be
described by 𝑁 simultaneous first-order state equations
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Linear system state-space equations

for a linear CT systems, the state and output equations can be expressed as:

¤𝒒 = 𝑨𝒒 + 𝑩𝒙

𝒚 = 𝑪𝒒 + 𝑫𝒙

■ 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑁 ) is the state vector

■ 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑀 ) is the input vector

■ 𝑨 is an 𝑁 × 𝑁 matrix

■ 𝑩 is an 𝑁 × 𝑀 matrix

■ 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑘) is the output vector

■ 𝑪 is an 𝑘 × 𝑁 matrix

■ 𝑫 is an 𝑘 × 𝑀 matrix
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Example: second-order system

consider the second-order circuit

■ since the network is of second order two state variables are needed; let us select
the inductor current 𝑖(𝑡) and capacitor voltage 𝑣𝐶 (𝑡)

■ writing the loop equation yields

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 1

𝐶
𝑣𝐶 (𝑡) = 𝑣(𝑡)

we also have

𝑖(𝑡) = 𝐶
𝑑𝑣𝐶

𝑑𝑡
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■ rearranging by letting derivatives on one side and other terms on the other side:

𝑑𝑖

𝑑𝑡
= −(𝑅/𝐿)𝑖 − 1

𝐿𝐶
𝑣𝐶 (𝑡) − (1/𝐿)𝑣(𝑡)

𝑑𝑣𝐶

𝑑𝑡
= (1/𝐶)𝑖(𝑡)

■ these equations are the state equations and can be solved simultaneously for the
state variables, 𝑖(𝑡) and 𝑣𝐶 (𝑡) if we know the input, 𝑣(𝑡), and the initial conditions

■ from these state variables, we can solve for all other network variables, e.g.,

𝑣𝐿 (𝑡) = −𝑅𝑖(𝑡) − 𝑣𝑐 (𝑡) + 𝑣(𝑡)

this equation is an output equation
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the state equations, can be written as

¤𝒒 = 𝑨𝒒 + 𝑩𝑥

where

¤𝒒 =

[
𝑑𝑖/𝑑𝑡
𝑑𝑣𝐶/𝑑𝑡

]
, 𝑨 =

[
−𝑅/𝐿 −1/𝐿𝐶
1/𝐶 0

]
𝒒 =

[
𝑖

𝑣𝐶

]
, 𝑩 =

[
−1/𝐿
0

]
; 𝑥 = 𝑣(𝑡)

the output equation, can be written as

𝑦 = 𝑪𝒙 + 𝐷𝑥

where

𝑦 = 𝑣𝐿 (𝑡), 𝑪 =
[
−𝑅 −1

]
, 𝒒 =

[
𝑖

𝑣𝐶

]
, 𝐷 = 1, 𝑥 = 𝑣(𝑡)
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Non-uniqueness

■ a state-space representation is not unique

■ different choices of state variables lead to a different representations

Example: if we choose 𝑣𝑅 (𝑡) and 𝑣𝐶 (𝑡) to be the state variables in the previous
example, then state equation become:

𝑑𝑣𝑅

𝑑𝑡
= −𝑅

𝐿
𝑣𝑅 − 𝑅

𝐿
𝑣𝐶 + 𝑅

𝐿
𝑣(𝑡)

𝑑𝑣𝐶

𝑑𝑡
=

1

𝑅𝐶
𝑣𝑅
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Example 11.1

find a state-space representation if the output is the current through the resistor
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Solution: the following steps gives a viable representation in state-space

■ select the state variables by writing the derivative equation for all energy-storage
elements, that is, the inductor and the capacitor:

𝐶
𝑑𝑣𝐶

𝑑𝑡
= 𝑖𝐶

𝐿
𝑑𝑖𝐿

𝑑𝑡
= 𝑣𝐿

we choose the state variables as the differentiated quantities, namely 𝑣𝐶 and 𝑖𝐿

■ since 𝑖𝐶 and 𝑣𝐿 are not state variables, our next step is to express 𝑖𝐶 and 𝑣𝐿 as
linear combinations of the state variables, 𝑣𝐶 and 𝑖𝐿 , and the input, 𝑣(𝑡)

■ using Kirchhoff’s voltage and current laws at Node 1,

𝑖𝐶 = −𝑖𝑅 + 𝑖𝐿 = − 1

𝑅
𝑣𝐶 + 𝑖𝐿

𝑣𝐿 = −𝑣𝐶 + 𝑣(𝑡)

which yields 𝑖𝐶 , 𝑣𝐿 in terms of the state variables, 𝑣𝐶 and 𝑖𝐿 , and input 𝑣(𝑡)
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■ putting things together
𝑑𝑣𝐶

𝑑𝑡
= − 1

𝑅𝐶
𝑣𝐶 + 1

𝐶
𝑖𝐿

𝑑𝑖𝐿

𝑑𝑡
= − 1

𝐿
𝑣𝐶 + 1

𝐿
𝑣(𝑡)

■ we now find the output equation; since the output is 𝑖𝑅 (𝑡),

𝑖𝑅 =
1

𝑅
𝑣𝐶

■ rewritten in vector-matrix form:[
𝑑𝑣𝐶
𝑑𝑡
𝑑𝑖𝐿
𝑑𝑡

]
=

[
−1/(𝑅𝐶) 1/𝐶
−1/𝐿 0

] [
𝑣𝐶
𝑖𝐿

]
+
[

0
1/𝐿

]
𝑣(𝑡)

𝑖𝑅 =
[
1/𝑅 0

] [ 𝑣𝐶
𝑖𝐿

]
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Example 11.2

find the state equations using the state variables 𝑞1 (𝑡) (capacitor voltage) and the
𝑞2 (𝑡) (inductor current)

verify that all possible system signals at some instant 𝑡 can be determined from the
system state and the input at 𝑡
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Solution: ¤𝑞1 is the current through the capacitor and 2 ¤𝑞2 is the voltage across the
inductor; using KCL and KVL, we have

¤𝑞1 = 𝑖𝐶 = 𝑖1 − 𝑖2 − 𝑞2 = (𝑥 − 𝑞1) − 0.5𝑞1 − 𝑞2 = −1.5𝑞1 − 𝑞2 + 𝑥

2 ¤𝑞2 = 𝑞1 − 𝑣3 = 𝑞1 − 5𝑞2 ⇐⇒ ¤𝑞2 = 0.5𝑞1 − 2.5𝑞2

thus, the state equations are

¤𝑞1 = −1.5𝑞1 − 𝑞2 + 𝑥

¤𝑞2 = 0.5𝑞1 − 2.5𝑞2

in matrix form, we have[
¤𝑞1
¤𝑞2

]
︸︷︷︸

¤𝒒

=

[
−1.5 −1
0.5 −2.5

]
︸            ︷︷            ︸

𝑨

[
𝑞1
𝑞2

]
︸︷︷︸

𝒒

+
[
1
0

]
︸︷︷︸

𝑩

𝑥
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once we solve for 𝑞1 and 𝑞2 at 𝑡, we can use KCL and KVL to find any possible signal
(current/voltage) in the circuit at 𝑡:

𝑖1 = (𝑥 − 𝑞1)/1
𝑣1 = 𝑥 − 𝑞1

𝑣2 = 𝑞1

𝑖2 = 𝑞1/2

𝑖𝐶 = (𝑥 − 𝑞1)/1 − 𝑞1/2 − 𝑞2

𝑖3 = 𝑞2

𝑣3 = 5𝑞2

𝑣𝐿 = 𝑞1 − 5𝑞2

if the outputs are 𝑦1 = 𝑣1 and 𝑦2 = 𝑖𝐶 , then the output equations are

𝑦1 = 𝑥 − 𝑞1

𝑦2 = −(3/2)𝑞1 − 𝑞2 + 𝑥

or in matrix form: [
𝑦1
𝑦2

]
︸︷︷︸

𝒚

=

[
−1 0
−3/2 −1

]
︸          ︷︷          ︸

𝑪

[
𝑞1
𝑞2

]
︸︷︷︸

𝒒

+
[
1
1

]
︸︷︷︸

𝑫

𝑥
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Mesh-current method procedure

1. choose all capacitor voltages and inductor currents to be the state variables

2. write the mesh-loop currents equations and express the state variables and their
first derivatives in terms of the loop currents

3. eliminate all variables other than state variables (and their first derivatives)
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Example 11.3

write the state equations for the circuit shown

Solution: there is one inductor and one capacitor in the network; thus, we choose the
inductor current 𝑞1 and the capacitor voltage 𝑞2 as the state variables

loop equations:

4𝑖1 − 2𝑖2 = 𝑥

2 (𝑖2 − 𝑖1) + ¤𝑞1 + 𝑞2 = 0

−𝑞2 + 3𝑖3 = 0

loop currents and state variables relation:

𝑞1 = 𝑖2

1

2
¤𝑞2 = 𝑖2 − 𝑖3
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from the second loop equation, we have

¤𝑞1 = 2 (𝑖1 − 𝑖2) − 𝑞2 = −𝑖2 + 2𝑖1 − 𝑖2 − 𝑞2

using 𝑞1 = 𝑖2 and 2𝑖1 − 𝑖2 = 1/2𝑥, we can eliminate 𝑖1 and 𝑖2, to obtain

¤𝑞1 = −𝑞1 − 𝑞2 +
1

2
𝑥

using 𝑞1 = 𝑖2 and 1
2 ¤𝑞2 = 𝑖2 − 𝑖3 and the last loop equation, we get

¤𝑞2 = 2𝑞1 −
2

3
𝑞2

hence the state equations are[
¤𝑞1
¤𝑞2

]
=

[
−1 −1
2 − 2

3

] [
𝑞1
𝑞2

]
+
[

1
2
0

]
𝑥
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Why state-space?

■ suited for (large) multiple-input, multiple-output (MIMO) systems
– such as a vehicle with input direction and input velocity yielding an output direction and

an output velocity

■ compact matrix notation along with powerful techniques of linear algebra greatly
facilitates complex manipulations
– without such features, many important results of modern system theory would have

been difficult to obtain

■ provides useful information about a system even if not solved explicitly

■ used to simulate complex systems of high order with multiple inputs/outputs
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Outline

• state-space modeling

• state equations from transfer function

• Laplace transform solution of state equations

• state-equations of discrete-time systems



Differential equation to transfer function

(𝐷𝑁 + 𝑎1𝐷
𝑁−1 + ··· + 𝑎𝑁−1𝐷 + 𝑎𝑁 )𝑦(𝑡)

= (𝑏0𝐷𝑁 + 𝑏1𝐷
𝑁−1 + ··· + 𝑏𝑁−1𝐷 + 𝑏𝑁 )𝑥(𝑡)

recall the transfer function for this system is

𝐻 (𝑠) = 𝑏0𝑠
𝑁 + 𝑏1𝑠

𝑁−1 + ··· + 𝑏𝑁−1𝑠 + 𝑏𝑁

𝑠𝑁 + 𝑎1𝑠
𝑁−1 + ··· + 𝑎𝑁−1𝑠 + 𝑎𝑁
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State equations from transfer function

■ state equations of LTI systems can be determined from the transfer function

■ integrator output 𝑞 serves as a natural state variable and integrator input is ¤𝑞

Illustration:

𝐻 (𝑠) = 1

𝑠 + 𝑎

¤𝑞 = −𝑎𝑞 + 𝑥 and 𝑦 = 𝑞

(different realizations lead to different state-space descriptions of the same system)
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Direct form II state equations

𝐻 (𝑠) = 𝑏0𝑠
𝑁 + 𝑏1𝑠

𝑁−1 + ··· + 𝑏𝑁−1𝑠 + 𝑏𝑁

𝑠𝑁 + 𝑎1𝑠
𝑁−1 + ··· + 𝑎𝑁−1𝑠 + 𝑎𝑁

𝑁 th-order direct form II realization:

SA — EE312state equations from transfer function 11.25



letting the 𝑁 integrator outputs 𝑞1, 𝑞2, . . . , 𝑞𝑁 , we have
¤𝑞1
¤𝑞2
...

¤𝑞𝑁−1
¤𝑞𝑁


=


0 1 0 0 0
0 0 1 0 0
... ... ... ... ...

0 0 0 0 1
−𝑎𝑁 −𝑎𝑁−1 −𝑎𝑁−2 −𝑎2 −𝑎1




𝑞1
𝑞2
...

𝑞𝑁−1
𝑞𝑁


+


0
0
...

0
1


𝑥

𝑦 =
[
𝑏𝑁 𝑏𝑁−1 · ·· 𝑏1

] 
𝑞1
𝑞2
...

𝑞𝑁

 + 𝑏0𝑥

where 𝑏𝑖 = 𝑏𝑖 − 𝑏0𝑎𝑖
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Example 11.4

consider the system described by the transfer function

𝐻 (𝑠) = 2𝑠 + 10

𝑠3 + 8𝑠2 + 19𝑠 + 12︸                   ︷︷                   ︸
direct form

=

(
2

𝑠 + 1

) (
𝑠 + 5

𝑠 + 3

) (
1

𝑠 + 4

)
︸                         ︷︷                         ︸

cascade

=

4
3

𝑠 + 1
− 2

𝑠 + 3
+

2
3

𝑠 + 4︸                      ︷︷                      ︸
parallel

■ we can realize this transfer function in (canonic) direct form II (DFII), transpose
DFII (TDFII), cascade, and parallel realizations

■ determine the state-space descriptions for each of these realizations
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Solution: direct form II

we choose the state variables to be the three integrator outputs 𝑞1, 𝑞2, and 𝑞3, then

¤𝑞1 = 𝑞2

¤𝑞2 = 𝑞3

¤𝑞3 = −12𝑞1 − 19𝑞2 − 8𝑞3 + 𝑥

𝑦 = 10𝑞1 + 2𝑞2
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in matrix form, these state and output equations become
¤𝑞1
¤𝑞2
¤𝑞3

 =


0 1 0
0 0 1

−12 −19 −8

︸                    ︷︷                    ︸
𝑨


𝑞1
𝑞2
𝑞3

 +

0
0
1

︸︷︷︸
𝑩

𝑥

𝒚 =
[
10 2 0

]︸            ︷︷            ︸
𝑪


𝑞1
𝑞2
𝑞3


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■ MATLAB’s tf2ss command finds the state equations of the DFII structure:
>> num = [2 10]; den = [1 8 19 12];

>> [A,B,C,D] = tf2ss(num,den)

A = -8 -19 -12

1 0 0

0 1 0

B = 1

0

0

C = 0 2 10

D = 0

MATLAB labels 𝑞1 as 𝑞𝑛, 𝑞2 and 𝑞𝑛−1, and so on

■ we can find the transfer function from the state-space representation using the
ss2tf and tf commands:
>> [num,den] = ss2tf(A,B,C,D); H = tf(num,den)

H =

2 s + 10

-----------------------

s^3 + 8 s^2 + 19 s + 12
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transpose direct form II

let the state variables 𝑣1, 𝑣2, and 𝑣3 be the output of the three integrators, then

¤𝑣1 = −12𝑣3 + 10𝑥

¤𝑣2 = 𝑣1 − 19𝑣3 + 2𝑥

¤𝑣3 = 𝑣2 − 8𝑣3

𝑦 = 𝑣3
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the matrix form of these state and output equations are
¤𝑣1
¤𝑣2
¤𝑣3

 =

0 0 −12
1 0 −19
0 1 −8

︸              ︷︷              ︸
𝑨


𝑣1
𝑣2
𝑣3

 +

10
2
0

︸  ︷︷  ︸
𝑩

𝑥

𝒚 =
[
0 0 1

]︸          ︷︷          ︸
𝑪


𝑣1
𝑣2
𝑣3


relationship between the state equation of the DFII and TDFII realizations

■ 𝑨 matrices in these two cases are the transpose of each other

■ 𝑩 of one is the transpose of 𝑪 in the other, and vice versa

𝑨⊤ = 𝑨, 𝑩⊤ = 𝑪, 𝑪⊤ = 𝑩
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cascade realization:

let the three integrator outputs 𝑤1, 𝑤2, and 𝑤3 be the state variables:

¤𝑤1 = −𝑤1 + 𝑥, ¤𝑤2 = 2𝑤1 − 3𝑤2, and ¤𝑤3 = 2𝑤1 + 2𝑤2 − 4𝑤3

we also have 𝑦 = 𝑤3; put into matrix form, we obtain
¤𝑤1

¤𝑤2

¤𝑤3

 =

−1 0 0
2 −3 0
2 2 −4



𝑤1

𝑤2

𝑤3

 +

1
0
0

 𝑥
𝑦 =

[
0 0 1

] 
𝑤1

𝑤2

𝑤3


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parallel realization:

the three integrator outputs 𝑧1, 𝑧2, and 𝑧3 are the state variables:

¤𝑧1 = −𝑧1 + 𝑥

¤𝑧2 = −3𝑧2 + 𝑥

¤𝑧3 = −4𝑧3 + 𝑥

𝑦 =
4

3
𝑧1 − 2𝑧2 +

2

3
𝑧3
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in matrix form, these equations are
¤𝑧1
¤𝑧2
¤𝑧3

 =

−1 0 0
0 −3 0
0 0 −4



𝑧1
𝑧2
𝑧3

 +

1
1
1

 𝑥
𝑦 =

[
4
3 −2 2

3

] 
𝑧1
𝑧2
𝑧3


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Outline

• state-space modeling

• state equations from transfer function

• Laplace transform solution of state equations

• state-equations of discrete-time systems



Linear system state-space equations

LTIC systems can be represented as

¤𝒒 = 𝑨𝒒 + 𝑩𝒙

𝒚 = 𝑪𝒒 + 𝑫𝒙

■ 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑁 ) is the state vector

■ 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑀 ) is the input vector

■ 𝑨 is an 𝑁 × 𝑁 matrix and 𝑩 is an 𝑁 × 𝑀 matrix

■ 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑘) is the output vector

■ 𝑪 is an 𝑘 × 𝑁 matrix and 𝑫 is an 𝑘 × 𝑀 matrix
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Laplace transform solution of state equations

the 𝑖th state equation is of the form

¤𝑞𝑖 = 𝑎𝑖1𝑞1 + 𝑎𝑖2𝑞2 + ··· + 𝑎𝑖𝑁𝑞𝑁 + 𝑏𝑖1𝑥1 + 𝑏𝑖2𝑥2 + ··· + 𝑏𝑖 𝑗𝑥 𝑗

taking Laplace transform

𝑠𝑄𝑖 (𝑠) − 𝑞𝑖 (0) =𝑎𝑖1𝑄1 (𝑠) + 𝑎𝑖2𝑄2 (𝑠) + ··· + 𝑎𝑖𝑁𝑄𝑁 (𝑠) + 𝑏𝑖1𝑋1 (𝑠)
+ 𝑏𝑖2𝑋2 (𝑠) + ··· + 𝑏𝑖 𝑗𝑋 𝑗 (𝑠)
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taking the Laplace transforms of all 𝑁 state equations, we obtain

𝑠


𝑄1 (𝑠)
𝑄2 (𝑠)

...

𝑄𝑁 (𝑠)

︸        ︷︷        ︸
𝑸 (𝑠)

−


𝑞1 (0)
𝑞2 (0)

...

𝑞𝑁 (0)

︸       ︷︷       ︸
𝒒 (0)

=


𝑎11 𝑎12 · ·· 𝑎1𝑁
𝑎21 𝑎22 · ·· 𝑎2𝑁
... ... · ·· ...

𝑎𝑁1 𝑎𝑁2 · ·· 𝑎𝑁𝑁

︸                               ︷︷                               ︸
𝑨


𝑄1 (𝑠)
𝑄2 (𝑠)

...

𝑄𝑁 (𝑠)

︸        ︷︷        ︸
𝑸 (𝑠)

+


𝑏11 𝑏12 · ·· 𝑏1 𝑗
𝑏21 𝑏22 · ·· 𝑏2 𝑗
... ... · ·· ...

𝑏𝑁1 𝑏𝑁2 · ·· 𝑏𝑁 𝑗

︸                              ︷︷                              ︸
𝑩


𝑋1 (𝑠)
𝑋2 (𝑠)
...

𝑋 𝑗 (𝑠)

︸      ︷︷      ︸
𝑿 (𝑠)

or

𝑠𝑸(𝑠) − 𝒒(0) = 𝑨𝑸(𝑠) + 𝑩𝑿 (𝑠) ⇒ (𝑠𝑰 − 𝑨)𝑸(𝑠) = 𝒒(0) + 𝑩𝑿 (𝑠)

where 𝑰 is the 𝑁 × 𝑁 identity matrix
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Solution of state space equations

Laplace solution of state-space equations

𝑸(𝑠) = (𝑠𝑰 − 𝑨)−1 [𝒒(0) + 𝑩𝑿 (𝑠)]
= 𝚽(𝑠) [𝒒(0) + 𝑩𝑿 (𝑠)]

with

𝚽(𝑠) = (𝑠𝑰 − 𝑨)−1

Solution of state-space equations

𝒒(𝑡) = L−1 [𝚽(𝑠)]𝒒(0)︸              ︷︷              ︸
zero-input response

+L−1 [𝚽(𝑠)𝑩𝑿 (𝑠)]︸                 ︷︷                 ︸
zero-state response
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Example 11.5

find the state vector 𝒒(𝑡) for the system

¤𝒒 = 𝑨𝒒 + 𝑩𝒙

where

𝑨 =

[
−12 2

3
−36 −1

]
𝑩 =

[
1
3
1

]
𝒙(𝑡) = 𝑢(𝑡)

and the initial conditions are 𝑞1 (0) = 2, 𝑞2 (0) = 1

Solution: we have
𝑸(𝑠) = 𝚽(𝑠) [𝒒(0) + 𝑩𝑿 (𝑠)]

let us first find 𝚽(𝑠), we have

(𝑠𝑰 − 𝑨) = 𝑠

[
1 0
0 1

]
−
[
−12 2

3
−36 −1

]
=

[
𝑠 + 12 − 2

3
36 𝑠 + 1

]
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and

𝚽(𝑠) = (𝑠𝑰 − 𝑨)−1 =

[
𝑠+1

(𝑠+4) (𝑠+9)
2/3

(𝑠+4) (𝑠+9)
−36

(𝑠+4) (𝑠+9)
𝑠+12

(𝑠+4) (𝑠+9)

]
now, 𝒒(0) is given as

𝒒(0) =
[
2
1

]
also, 𝑿 (𝑠) = 1/𝑠, and

𝑩𝑿 (𝑠) =
[

1
3
1

]
1

𝑠
=

[
1
3𝑠
1
𝑠

]
therefore,

𝒒(0) + 𝑩𝑿 (𝑠) =
[
2 + 1

3𝑠
1 + 1

𝑠

]
=

[
6𝑠+1
3𝑠
𝑠+1
𝑠

]
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and

𝑸(𝑠) = 𝚽(𝑠) [𝒒(0) + 𝑩𝑿 (𝑠)]

=

[
𝑠+1

(𝑠+4) (𝑠+9)
2/3

(𝑠+4) (𝑠+9)
−36

(𝑠+4) (𝑠+9)
𝑠+12

(𝑠+4) (𝑠+9)

] [
6𝑠+1
3𝑠
𝑠+1
𝑠

]
=

[
2𝑠2+3𝑠+1

𝑠 (𝑠+4) (𝑠+9)
𝑠−59

(𝑠+4) (𝑠+9)

]
=

[
1/36
𝑠

− 21/20
𝑠+4 + 136/45

𝑠+9
−63/5
𝑠+4 + 68/5

𝑠+9

]
the inverse Laplace transform of this equation yields[

𝑞1 (𝑡)
𝑞2 (𝑡)

]
=

[ (
1
36 − 21

20 𝑒
−4𝑡 + 136

45 𝑒−9𝑡
)
𝑢(𝑡)(

− 63
5 𝑒−4𝑡 + 68

5 𝑒−9𝑡
)
𝑢(𝑡)

]
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The output

the output equation is given by

𝒚 = 𝑪𝒒 + 𝑫𝒙

taking Laplace transform

𝒀 (𝑠) = 𝑪𝑸(𝑠) + 𝑫𝑿 (𝑠)

hence,

𝒀 (𝑠) = 𝑪{𝚽(𝑠) [𝒒(0) + 𝑩𝑿 (𝑠)]} + 𝑫𝑿 (𝑠)
= 𝑪𝚽(𝑠)𝒒(0)︸        ︷︷        ︸

zero-input response

+ [𝑪𝚽(𝑠)𝑩 + 𝑫]𝑿 (𝑠)︸                    ︷︷                    ︸
zero-state response

the zero-state response [i.e., the response 𝒀 (𝑠) when 𝒒(0) = 0] is given by

𝒀 (𝑠) = [𝑪𝚽(𝑠)𝑩 + 𝑫]𝑿 (𝑠)
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Transfer function

the transfer function matrix is:

𝑯(𝑠) = 𝑪𝚽(𝑠)𝑩 + 𝑫

and the zero-state response is

𝒀 (𝑠) = 𝑯(𝑠)𝑿 (𝑠)

■ 𝑯(𝑠) is a 𝑘 × 𝑗 matrix (𝑘 is the number of outputs and 𝑗 is the number of inputs)

■ 𝐻𝑖 𝑗 (𝑠) is the transfer function that relates the output 𝑦𝑖 (𝑡) to the input 𝑥 𝑗 (𝑡)
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Example 11.6

consider a system with a state equation[
¤𝑞1
¤𝑞2

]
=

[
0 1
−2 −3

] [
𝑞1
𝑞2

]
+
[
1 0
1 1

] [
𝑥1
𝑥2

]
and an output equation

𝑦1
𝑦2
𝑦3

 =

1 0
1 1
0 2


[
𝑞1
𝑞2

]
+

0 0
1 0
0 1


[
𝑥1
𝑥2

]
determine the transfer function matrix of the system
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Solution: here

𝑨 =

[
0 1

−2 −3

]
𝑩 =

[
1 0
1 1

]
𝑪 =


1 0
1 1
0 2

 𝑫 =


0 0
1 0
0 1


and

𝚽(𝑠) = (𝑠𝑰 − 𝑨)−1 =

[
𝑠 −1
2 𝑠 + 3

]−1
=

[ 𝑠+3
(𝑠+1) (𝑠+2)

1
(𝑠+1) (𝑠+2)

−2
(𝑠+1) (𝑠+2)

𝑠
(𝑠+1) (𝑠+2)

]
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hence, the transfer function matrix 𝑯(𝑠) is given by

𝑯(𝑠) = 𝑪𝚽(𝑠)𝑩 + 𝑫

=


1 0
1 1
0 2


[ 𝑠+3

(𝑠+1) (𝑠+2)
1

(𝑠+1) (𝑠+2)
−2

(𝑠+1) (𝑠+2)
𝑠

(𝑠+1) (𝑠+2)

] [
1 0
1 1

]
+

0 0
1 0
0 1


=


𝑠+4

(𝑠+1) (𝑠+2)
1

(𝑠+1) (𝑠+2)
𝑠+4
𝑠+2

1
𝑠+2

2(𝑠−2)
(𝑠+1) (𝑠+2)

𝑠2+5𝑠+2
(𝑠+1) (𝑠+2)


and the zero-state response is

𝒀 (𝑠) = 𝑯(𝑠)𝑿 (𝑠)

the transfer function that relates the output 𝑦3 to the input 𝑥2 is

𝐻32(𝑠) =
𝑠2 + 5𝑠 + 2

(𝑠 + 1) (𝑠 + 2)
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Outline

• state-space modeling

• state equations from transfer function

• Laplace transform solution of state equations

• state-equations of discrete-time systems



State-equation of discrete-time system

an 𝑁 th-order difference equation can be expressed in terms of 𝑁 first-order
difference (state) equations

LTID systems state-space equation has the form:

𝒒 [𝑛 + 1] = 𝑨𝒒 [𝑛] + 𝑩𝒙 [𝑛]
𝒚[𝑛] = 𝑪𝒒 [𝑛] + 𝑫𝒙 [𝑛]

■ 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑁 ) is the state vector

■ 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑀 ) is the input vector

■ 𝑨 is an 𝑁 × 𝑁 matrix; 𝑩 is an 𝑁 × 𝑀 matrix

■ 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑘) is the output vector

■ 𝑪 is an 𝑘 × 𝑁 matrix; 𝑫 is an 𝑘 × 𝑀 matrix
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DFII state-space description

consider the 𝑧-transfer function

𝐻 [𝑧] = 𝑏0𝑧
𝑁 + 𝑏1𝑧

𝑁−1 + ··· + 𝑏𝑁−1𝑧 + 𝑏𝑁

𝑧𝑁 + 𝑎1𝑧
𝑁−1 + ··· + 𝑎𝑁−1𝑧 + 𝑎𝑁

the input 𝑥 [𝑛] and the output 𝑦[𝑛] of this system are related by

(𝐸𝑁 + 𝑎1𝐸
𝑁−1 + ··· + 𝑎𝑁−1𝐸 + 𝑎𝑁 )𝑦[𝑛]

= (𝑏0𝐸𝑁 + 𝑏1𝐸
𝑁−1 + ··· + 𝑏𝑁−1𝐸 + 𝑏𝑁 )𝑥 [𝑛]
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DFII realization
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we can write 𝑁 equations, one at the input of each delay and output equation:

𝑞1 [𝑛 + 1] = 𝑞2 [𝑛]
𝑞2 [𝑛 + 1] = 𝑞3 [𝑛]

...

𝑞𝑁−1 [𝑛 + 1] = 𝑞𝑁 [𝑛]
𝑞𝑁 [𝑛 + 1] = −𝑎𝑁𝑞1 [𝑛] − 𝑎𝑁−1𝑞2 [𝑛] − ··· − 𝑎1𝑞𝑁 [𝑛] + 𝑥 [𝑛]

𝑦[𝑛] = 𝑏𝑁𝑞1 [𝑛] + 𝑏𝑁−1𝑞2 [𝑛] + ··· + 𝑏1𝑞𝑁 [𝑛] + 𝑏0𝑞𝑁+1 [𝑛]

eliminating 𝑞𝑁+1 [𝑛] from the output equation gives

𝑦[𝑛] = 𝑏𝑁𝑞1 [𝑛] + 𝑏𝑁−1𝑞2 [𝑛] + ··· + 𝑏1𝑞𝑁 [𝑛] + 𝑏0𝑥 [𝑛]

where 𝑏𝑖 = 𝑏𝑖 − 𝑏0𝑎𝑖
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DFII discrete-time state equation in matrix form


𝑞1 [𝑛 + 1]
𝑞2 [𝑛 + 1]

...

𝑞𝑁−1 [𝑛 + 1]
𝑞𝑁 [𝑛 + 1]

︸                 ︷︷                 ︸
𝒒 [𝑛+1]

=


0 1 0 · ·· 0 0
0 0 1 · ·· 0 0
...

...
... · ·· ...

...

0 0 0 · ·· 0 1
−𝑎𝑁 −𝑎𝑁−1 −𝑎𝑁−2 · ·· −𝑎2 −𝑎1

︸                                                             ︷︷                                                             ︸
𝑨


𝑞1 [𝑛]
𝑞2 [𝑛]

...

𝑞𝑁−1 [𝑛]
𝑞𝑁 [𝑛]

︸            ︷︷            ︸
𝒒 [𝑛]

+


0
0
...

0
1

︸︷︷︸
𝑩

𝑥 [𝑛]

𝒚[𝑛] =
[
𝑏𝑁 𝑏𝑁−1 · ·· 𝑏1

]︸                              ︷︷                              ︸
𝑪


𝑞1 [𝑛]
𝑞2 [𝑛]

...

𝑞𝑁 [𝑛]

 + 𝑏0︸︷︷︸
𝑫

𝑥 [𝑛]
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Recursive solution of discrete-time state equations

consider the state equation

𝒒 [𝑛 + 1] = 𝑨𝒒 [𝑛] + 𝑩𝒙 [𝑛]

from this, we have

𝒒 [𝑛] = 𝑨𝒒 [𝑛 − 1] + 𝑩𝒙 [𝑛 − 1]
𝒒 [𝑛 − 1] = 𝑨𝒒 [𝑛 − 2] + 𝑩𝒙 [𝑛 − 2]
𝒒 [𝑛 − 2] = 𝑨𝒒 [𝑛 − 3] + 𝑩𝒙 [𝑛 − 3]

...

𝒒 [1] = 𝑨𝒒 [0] + 𝑩𝒙 [0]

substituting the expression for 𝒒 [𝑛 − 1] into that for 𝒒 [𝑛], we obtain

𝒒 [𝑛] = 𝑨2𝒒 [𝑛 − 2] + 𝑨𝑩𝒙 [𝑛 − 2] + 𝑩𝒙 [𝑛 − 1]
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substituting the expression for 𝒒 [𝑛 − 2] in this equation, we obtain

𝒒 [𝑛] = 𝑨3𝒒 [𝑛 − 3] + 𝑨2𝑩𝒙 [𝑛 − 3] + 𝑨𝑩𝒙 [𝑛 − 2] + 𝑩𝒙 [𝑛 − 1]

continuing in this way, we obtain

𝒒 [𝑛] = 𝑨𝑛𝒒 [0] + 𝑨𝑛−1𝑩𝒙 [0] + 𝑨𝑛−2𝑩𝒙 [1] + ··· + 𝑩𝒙 [𝑛 − 1]

= 𝑨𝑛𝒒 [0] +
𝑛−1∑︁
𝑚=0

𝑨𝑛−1−𝑚𝑩𝒙 [𝑚]

thus

𝒚[𝑛] = 𝑪𝒒 + 𝑫𝒙

= 𝑪𝑨𝑛𝒒 [0] +
𝑛−1∑︁
𝑚=0

𝑪𝑨𝑛−1−𝑚𝑩𝒙 [𝑚] + 𝑫𝒙
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