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• frequency response
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10.1



Solving linear difference equations

� the 𝑧-transform converts difference equations into algebraic equations

� taking the inverse 𝑧-transform of the 𝑧-domain solution yields the desired solution

Example:

𝑦[𝑛 + 2] − 5𝑦[𝑛 + 1] + 6𝑦[𝑛] = 3𝑥 [𝑛 + 1] + 5𝑥 [𝑛]

with 𝑦[−1] = 11/6, 𝑦[−2] = 37/36, and input 𝑥 [𝑛] = (2)−𝑛𝑢[𝑛]
� using left-shift property requires a knowledge of conditions 𝑦[0], . . . , 𝑦[𝑁 − 1]

� to directly use initial conditions, we express the difference equation in delay form
and use the right-shift property

SA — EE312solution of linear difference equations 10.2



the delay-form difference equation is

𝑦[𝑛] − 5𝑦[𝑛 − 1] + 6𝑦[𝑛 − 2] = 3𝑥 [𝑛 − 1] + 5𝑥 [𝑛 − 2]

here, 𝑦[𝑛 − 𝑚] (or 𝑥 [𝑛 − 𝑚]) means 𝑦[𝑛 − 𝑚]𝑢[𝑛] (or 𝑥 [𝑛 − 𝑚]𝑢[𝑛] ); we have

𝑦[𝑛]𝑢[𝑛] ⇐⇒ 𝑌 (𝑧)

𝑦[𝑛 − 1]𝑢[𝑛] ⇐⇒ 1

𝑧
𝑌 (𝑧) + 𝑦[−1] = 1

𝑧
𝑌 (𝑧) + 11

6

𝑦[𝑛 − 2]𝑢[𝑛] ⇐⇒ 1

𝑧2
𝑌 (𝑧) + 1

𝑧
𝑦[−1] + 𝑦[−2] = 1

𝑧2
𝑌 (𝑧) + 11

6𝑧
+ 37

36

since 𝑥 [𝑛] is causal, 𝑥 [𝑛 − 𝑚]𝑢[𝑛] ⇐⇒ 1
𝑧𝑚

𝑋 (𝑧), we thus have

𝑥 [𝑛] = (2)−𝑛𝑢[𝑛] = (0.5)𝑛𝑢[𝑛] ⇐⇒ 𝑧

𝑧 − 0.5

𝑥 [𝑛 − 1]𝑢[𝑛] ⇐⇒ 1

𝑧
𝑋 (𝑧) = 1

𝑧

𝑧

𝑧 − 0.5
=

1

𝑧 − 0.5

𝑥 [𝑛 − 2]𝑢[𝑛] ⇐⇒ 1

𝑧2
𝑋 (𝑧) = 1

𝑧2
𝑋 (𝑧) = 1

𝑧(𝑧 − 0.5)
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taking the 𝑧-transform of the difference equation:

𝑌 (𝑧) − 5

[
1

𝑧
𝑌 (𝑧) + 11

6

]
+ 6

[
1

𝑧2
𝑌 (𝑧) + 11

6𝑧
+ 37

36

]
=

3

𝑧 − 0.5
+ 5

𝑧(𝑧 − 0.5)(
1 − 5

𝑧
+ 6

𝑧2

)
𝑌 (𝑧) −

(
3 − 11

𝑧

)
=

3

𝑧 − 0.5
+ 5

𝑧(𝑧 − 0.5)

rearranging gives,

𝑌 (𝑧)
𝑧

=
3𝑧2 − 9.5𝑧 + 10.5

(𝑧 − 0.5) (𝑧 − 2) (𝑧 − 3) =
(26/15)
𝑧 − 0.5

− (7/3)
𝑧 − 2

+ (18/5)
𝑧 − 3

therefore,

𝑌 (𝑧) = 26
15

(
𝑧

𝑧 − 0.5

)
− 7

3

(
𝑧

𝑧 − 2

)
+ 18

5

(
𝑧

𝑧 − 3

)
and

𝑦[𝑛] =
[
26
15 (0.5)

𝑛 − 7
3 (2)

𝑛 + 18
5 (3)𝑛

]
𝑢[𝑛]
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Zero-input and zero-state components

� we can separate the solution into zero-input and zero-state components

� separate the response into terms arising from the input and terms arising from i.c.

in the previous example, we have(
1 − 5

𝑧
+ 6

𝑧2

)
𝑌 (𝑧) =

(
3 − 11

𝑧

)
︸     ︷︷     ︸

IC terms

+ (3𝑧 + 5)
𝑧(𝑧 − 0.5)︸       ︷︷       ︸

input terms

multiplying both sides by 𝑧2 yields(
𝑧2 − 5𝑧 + 6

)
𝑌 (𝑧) = 𝑧(3𝑧 − 11)︸      ︷︷      ︸

IC terms

+ 𝑧(3𝑧 + 5)
𝑧 − 0.5︸     ︷︷     ︸

input terms
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hence,

𝑌 (𝑧) = 𝑧(3𝑧 − 11)
𝑧2 − 5𝑧 + 6︸        ︷︷        ︸

zero-input response

+ 𝑧(3𝑧 + 5)
(𝑧 − 0.5) (𝑧2 − 5𝑧 + 6)︸                        ︷︷                        ︸

zero-state response

we expand both terms on the right-hand side into modified partial fractions:

𝑌 (𝑧) =
[
5

(
𝑧

𝑧 − 2

)
− 2

(
𝑧

𝑧 − 3

)]
︸                         ︷︷                         ︸

zero-input response

+
[
26

15

(
𝑧

𝑧 − 0.5

)
− 22

3

(
𝑧

𝑧 − 2

)
+ 28

5

(
𝑧

𝑧 − 3

)]
︸                                                     ︷︷                                                     ︸

zero-state response

thus

𝑦[𝑛] = (5(2)𝑛 − 2(3)𝑛) 𝑢[𝑛]︸                     ︷︷                     ︸
zero-input response

+
(
26

15
(0.5)𝑛 − 22

3
(2)𝑛 + 28

5
(3)𝑛

)
𝑢[𝑛]︸                                           ︷︷                                           ︸

zero-state response

=

[
−7

3
(2)𝑛 + 18

5
(3)𝑛 + 26

15
(0.5)𝑛

]
𝑢[𝑛]
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The transfer function

the transfer function of an LTID system with impulse response ℎ[𝑛] is

𝐻 (𝑧) =
∞∑︁

𝑛=−∞
ℎ[𝑛]𝑧−𝑛

� 𝐻 (𝑧) is 𝑧-transform of impulse response ℎ[𝑛]

� the LTID system response 𝑦[𝑛] to an everlasting exponential 𝑧𝑛 is

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑧𝑛 =

∞∑︁
𝑚=−∞

ℎ[𝑚]𝑧𝑛−𝑚 = 𝐻 (𝑧)𝑧𝑛

for fixed 𝑧, the output 𝑦[𝑛] = 𝐻 (𝑧)𝑧𝑛 has same form as input 𝑧𝑛

– this input is called eigenfunction

� an alternate definition of the transfer function 𝐻 (𝑧) of an LTID system is

𝐻 (𝑧) = output signal

input signal

����
input=exponential 𝑧𝑛
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Zero-state response

taking 𝑧-transform of 𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛], we have

𝑌 (𝑧) = 𝑋 (𝑧)𝐻 (𝑧)

� we can find zero state response by taking the inverse 𝑧-transform:

𝑦[𝑛] = Z−1{𝑋 (𝑧)𝐻 (𝑧)}

� given the input and output, we can find transfer function as

𝐻 (𝑧) = 𝑌 (𝑧)
𝑋 (𝑧) =

Z [zero-state response]
Z [input]
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Block diagrams

Block diagram of linear system

𝑋 [𝑧 ] 𝑌 [𝑧 ]𝐻 [𝑧 ]

Cascade interconnection

𝑋 [𝑧 ] 𝑋 [𝑧 ] 𝑌 [𝑧 ]𝑌 [𝑧 ]
𝐻1 [𝑧 ] 𝐻2 [𝑧 ] 𝐻1 [𝑧 ]𝐻2 [𝑧 ]

𝑊 [𝑧 ]

Parallel interconnection

𝑋 [𝑧 ] 𝑋 [𝑧 ] 𝑌 [𝑧 ]𝑌 [𝑧 ]

𝐻1 [𝑧 ]

𝐻2 [𝑧 ]

𝐻1 [𝑧 ] + 𝐻2 [𝑧 ]
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Feedback interconnection

𝑋 [𝑧 ] 𝑋 [𝑧 ]𝑌 [𝑧 ] 𝑌 [𝑧 ]

𝐻 [𝑧 ]

𝐺 [𝑧 ]
𝐸 [𝑧 ] 𝐺 [𝑧 ]

1 +𝐺 [𝑧 ]𝐻 [𝑧 ]

𝑌 (𝑧)
𝑋 (𝑧) =

𝐺 (𝑧)
1 + 𝐺 (𝑧)𝐻 (𝑧)

Unit delay: the unit delay, which is represented by a box marked 𝐷, will be
represented by its transfer function 1/𝑧

SA — EE312the transfer function 10.10



Transfer function of LTI difference system

𝑁th-order LTID system

𝑄 [𝐸]𝑦[𝑛] = 𝑃[𝐸]𝑥 [𝑛]

or

(𝐸𝑁 + 𝑎1𝐸
𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁 )𝑦[𝑛]

= (𝑏0𝐸𝑁 + 𝑏1𝐸
𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁 )𝑥 [𝑛]

the transfer function is

𝐻 (𝑧) = 𝑃(𝑧)
𝑄(𝑧) =

𝑏0𝑧
𝑁 + 𝑏1𝑧

𝑁−1 + · · · + 𝑏𝑁−1𝑧 + 𝑏𝑁

𝑧𝑁 + 𝑎1𝑧
𝑁−1 + · · · + 𝑎𝑁−1𝑧 + 𝑎𝑁
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Example 10.1

consider an LTID system described by the difference equation

𝑦[𝑛 + 2] + 𝑦[𝑛 + 1] + 0.16𝑦[𝑛] = 𝑥 [𝑛 + 1] + 0.32𝑥 [𝑛]

or (
𝐸2 + 𝐸 + 0.16

)
𝑦[𝑛] = (𝐸 + 0.32)𝑥 [𝑛]

find the transfer function and the zero-state response 𝑦[𝑛] if 𝑥 [𝑛] = (−2)−𝑛𝑢[𝑛]

Solution: from the difference equation, we find

𝐻 (𝑧) = 𝑃(𝑧)
𝑄(𝑧) =

𝑧 + 0.32

𝑧2 + 𝑧 + 0.16

the input 𝑥 [𝑛] = (−2)−𝑛𝑢[𝑛] = (−0.5)𝑛𝑢[𝑛] 𝑧-transform is

𝑋 (𝑧) = 𝑧

𝑧 + 0.5
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therefore,

𝑌 (𝑧) = 𝑋 (𝑧)𝐻 (𝑧) = 𝑧(𝑧 + 0.32)
(𝑧2 + 𝑧 + 0.16) (𝑧 + 0.5)

and

𝑌 (𝑧)
𝑧

=
(𝑧 + 0.32)

(𝑧2 + 𝑧 + 0.16) (𝑧 + 0.5) =
(𝑧 + 0.32)

(𝑧 + 0.2) (𝑧 + 0.8) (𝑧 + 0.5)

=
2/3

𝑧 + 0.2
− 8/3

𝑧 + 0.8
+ 2

𝑧 + 0.5

so that

𝑌 (𝑧) = 2

3

(
𝑧

𝑧 + 0.2

)
− 8

3

(
𝑧

𝑧 + 0.8

)
+ 2

(
𝑧

𝑧 + 0.5

)
and

𝑦[𝑛] =
[
2

3
(−0.2)𝑛 − 8

3
(−0.8)𝑛 + 2(−0.5)𝑛

]
𝑢[𝑛]
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Example 10.2

if the input to the unit delay is 𝑥 [𝑛]𝑢[𝑛], then its output is given by

𝑦[𝑛] = 𝑥 [𝑛 − 1]𝑢[𝑛 − 1]

show that the transfer function of a unit delay is 1/𝑧

Solution: the 𝑧-transform of this equation yields

𝑌 (𝑧) = 1

𝑧
𝑋 (𝑧) = 𝐻 (𝑧)𝑋 (𝑧)

it follows that the transfer function of the unit delay is

𝐻 (𝑧) = 1

𝑧
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Stability

BIBO stability

� if all the poles of 𝐻 (𝑧) are within the unit circle, then system is BIBO-stable
– all the terms in ℎ[𝑛] are decaying exponentials and ℎ[𝑛] is absolutely summable

� otherwise the system is BIBO-unstable

Internal stability: if 𝑃(𝑧) and 𝑄(𝑧) have no common factors, then the poles of 𝐻 (𝑧)
are the characteristic roots of the system; hence an LTID system is

1. asymptotically stable if and only if all the poles are within the unit circle

2. unstable if and only if either one or both of the following conditions exist:
– (i) at least one pole of 𝐻 (𝑧) is outside the unit circle
– (ii) there are repeated poles of 𝐻 (𝑧) on the unit circle

3. marginally stable if and only if there are no poles outside the unit circle, and there
are some simple poles on the unit circle
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Inverse systems

if 𝐻 (𝑧) is the transfer function of a system S , then S𝑖 , its inverse system, has a
transfer function 𝐻𝑖 (𝑧) given by

𝐻𝑖 (𝑧) =
1

𝐻 (𝑧)

Examples:
� an accumulator 𝐻 (𝑧) = 𝑧/(𝑧 − 1) and a backward difference system
𝐻𝑖 (𝑧) = (𝑧 − 1)/𝑧 are inverse of each other

� if

𝐻 (𝑧) = 𝑧 − 0.4

𝑧 − 0.7

its inverse system transfer function is

𝐻𝑖 (𝑧) =
𝑧 − 0.7

𝑧 − 0.4

as required by the property 𝐻 (𝑧)𝐻𝑖 (𝑧) = 1; hence, it follows that

ℎ[𝑛] ∗ ℎ𝑖 [𝑛] = 𝛿[𝑛]
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Frequency response

the LTID system response to complex sinusoid 𝑥 [𝑛] = 𝐴𝑥𝑒
𝑗Ω𝑛 is

𝑦[𝑛] =
∞∑︁

𝑚=−∞
ℎ[𝑚]𝐴𝑥 𝑒

𝑗Ω(𝑛−𝑚) = 𝐻 (𝑒 𝑗Ω)𝐴𝑥𝑒
𝑗Ω𝑛

= |𝐻 (𝑒 𝑗Ω) | |𝐴𝑥 |𝑒 𝑗 (Ω𝑛+∠𝐻 (𝑒 𝑗Ω)+∠𝐴𝑥)

� response is also complex sinusoid of the same frequency Ω multiplied by 𝐻 (𝑒 𝑗Ω)

� 𝐻 (𝑒 𝑗Ω) is the frequency response of the system

� using frequency response, we can find output for any sinusoidal input

� 𝐻 (𝑒 𝑗Ω) is a periodic function of Ω with period 2𝜋 since

𝐻 (𝑒 𝑗Ω) = 𝐻 (𝑒 𝑗 (Ω+2𝜋𝑚) ) 𝑚 integer

Sinusoidal input response: the response to Re(𝑒 𝑗 (Ω𝑛+𝜃) ) = cos(Ω𝑛 + 𝜃) is

𝑦[𝑛] = |𝐻 (𝑒 𝑗Ω) | cos
(
Ω𝑛 + 𝜃 + ∠𝐻 (𝑒 𝑗Ω)

)
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Amplitude response

� |𝐻 (𝑒 𝑗Ω) | is the amplitude gain called amplitude response or magnitude response

� plot |𝐻 (𝑒 𝑗Ω) | v Ω shows the amplitude gain as a function of frequency Ω

Phase response

� ∠𝐻 (𝑒 𝑗Ω) is the phase response

� plot ∠𝐻 (𝑒 𝑗Ω) v Ω shows how the system changes the phase of the input sinusoid
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Steady-state response to causal inputs

� the response of an LTID system to a causal sinusoidal input cos(Ω𝑛)𝑢[𝑛] is
𝑦[𝑛], plus a natural component consisting of the characteristic modes

� for a stable system, the steady-state response of a system to a causal sinusoidal
input 𝑥 [𝑛] = cos(Ω𝑛)𝑢[𝑛] is

𝑦𝑠𝑠 [𝑛] =
��𝐻 (𝑒 𝑗Ω)

�� cos (Ω𝑛 + ∠𝐻 (𝑒 𝑗Ω)
)

Response to sampled CT sinusoids

� input may be a sampled CT sinusoid cos𝜔𝑡 (or an exponential 𝑒 𝑗𝜔𝑡
)

� cos𝜔𝑡 sampled with sampling interval 𝑇 is DT sinusoid cos𝜔𝑛𝑇

� therefore, all the results developed here apply if we substitute 𝜔𝑇 for Ω:

Ω = 𝜔𝑇
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Example 10.3

for a system described by the equation

𝑦[𝑛 + 1] − 0.8𝑦[𝑛] = 𝑥 [𝑛 + 1]

find the system response to the inputs

(a) 𝑥 [𝑛] = cos( 𝜋6 𝑛 − 0.2)
(b) 𝑥 [𝑛] = 1

(c) a sampled sinusoid cos(1500𝑡) with sampling interval 𝑇 = 0.001
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Solution: the system equation can be expressed as

(𝐸 − 0.8)𝑦[𝑛] = 𝐸𝑥 [𝑛]

the transfer function of the system is

𝐻 (𝑧) = 𝑧

𝑧 − 0.8
=

1

1 − 0.8𝑧−1

the frequency response is

𝐻 (𝑒 𝑗Ω) = 1

1 − 0.8𝑒− 𝑗Ω
=

1

(1 − 0.8 cosΩ) + 𝑗0.8 sinΩ

therefore,��𝐻 (𝑒 𝑗Ω)
�� = 1√︁

(1 − 0.8 cosΩ)2 + (0.8 sinΩ)2
=

1
√
1.64 − 1.6 cosΩ

and

∠𝐻 (𝑒 𝑗Ω) = − tan−1
[

0.8 sinΩ

1 − 0.8 cosΩ

]
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(a) for 𝑥 [𝑛] = cos[(𝜋/6)𝑛 − 0.2],Ω = 𝜋/6 and��𝐻 (
𝑒 𝑗 𝜋/6) �� = 1√

1.64−1.6 cos 𝜋
6

= 1.983

∠𝐻
(
𝑒 𝑗 𝜋/6) = − tan−1

[
0.8 sin 𝜋

6

1−0.8 cos 𝜋
6

]
= −0.916 rad

therefore,

𝑦[𝑛] = 1.983 cos
( 𝜋
6
𝑛 − 0.2 − 0.916

)
= 1.983 cos

( 𝜋
6
𝑛 − 1.116

)
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(b) since 1𝑛 = (𝑒 𝑗Ω)𝑛 with Ω = 0, the amplitude response is

𝐻
(
𝑒 𝑗0) = 1√︁

1.64 − 1.6 cos(0)
=

1
√
0.04

= 5 = 5∠0

therefore, ��𝐻 (
𝑒 𝑗0) �� = 5 and ∠𝐻

(
𝑒 𝑗0) = 0

and the system response to input 1 is

𝑦[𝑛] = 5 (1𝑛) = 5 for all 𝑛
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(c) samplingcos 1500𝑡 every 𝑇 = 0.001, the input is

𝑥 [𝑛] = cos(1.5𝑛)

in this case, Ω = 1.5 and��𝐻 (
𝑒 𝑗1.5

) �� = 1√
1.64−1.6 cos(1.5)

= 0.809

∠𝐻
(
𝑒 𝑗1.5

)
= − tan−1

[
0.8 sin(1.5)

1−0.8 cos(1.5)

]
= −0.702rad

therefore,

𝑦[𝑛] = 0.809 cos(1.5𝑛 − 0.702)
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Frequency response using MATLAB

Omega = linspace(-pi,pi,400); H = @(z) z./(z-0.8);

subplot(1,2,1); plot(Omega,abs(H(exp(1j*Omega))),’k’); axis tight;

xlabel(’\Omega’); ylabel(’|H(e^{j \Omega})|’);

subplot(1,2,2); plot(Omega,angle(H(exp(1j*Omega))*180/pi),’k’);

axis tight;

xlabel(’\Omega’); ylabel(’\angle H(e^{j \Omega}) [deg]’);
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• solution of linear difference equations

• the transfer function

• frequency response

• realization of DT systems



DT systems realization

we shall consider a realization of a general 𝑁 th-order causal LTID system,

𝐻 (𝑧) = 𝑏0𝑧
𝑁 + 𝑏1𝑧

𝑁−1 + · · · + 𝑏𝑁−1𝑧 + 𝑏𝑁

𝑧𝑁 + 𝑎1𝑧
𝑁−1 + · · · + 𝑎𝑁−1𝑧 + 𝑎𝑁

� procedure for realizing an LTID transfer function is identical to that for the LTIC
system

� the basic element 1/𝑠 (integrator) replaced by the element 1/𝑧 (unit delay)
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Direct form I (DFI)
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Canonic form

Canonic direct form (DFII) Transpose of canonic direct form

the DFII and its transpose are canonic because they require 𝑁 delays, which is the
minimum number needed to implement the 𝑁 th-order LTID transfer function
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Example 10.4

find the canonic direct and the transposed canonic direct realizations of the following:

(a)
2

𝑧 + 5

(b)
4𝑧 + 28

𝑧 + 1

(c)
𝑧

𝑧 + 7

(d)
4𝑧 + 28

𝑧2 + 6𝑧 + 5

SA — EE312realization of DT systems 10.30



Solution:
(a) for this case, the transfer function is of the first order (𝑁 = 1); therefore, we need

only one delay for its realization

𝑎1 = 5 and 𝑏0 = 0, 𝑏1 = 2

canonic direct form and its transpose are shown above
(b) feedback and feedforward coefficients are

𝑎1 = 1 and 𝑏0 = 4, 𝑏1 = 28
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transfer functions with 𝑁 = 𝑀 may also be expressed as a sum of a constant and
a strictly proper transfer function; for example,

𝐻 (𝑧) = 4𝑧+28
𝑧+1 = 4 + 24

𝑧+1

hence, this can also be realized as two transfer functions in parallel
(c) here, 𝑁 = 1 and 𝑏0 = 1, 𝑏1 = 0 and 𝑎1 = 7

(d) here, 𝑁 = 2 with 𝑏0 = 0, 𝑏1 = 4, 𝑏2 = 28, 𝑎1 = 6, 𝑎2 = 5
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Realization of an FIR filter

� for finite impulse response (FIR) filters, the coefficients 𝑎𝑖 = 0 for all 𝑖 ≠ 0

� FIR filters can be implemented by means of the schemes developed so far by
eliminating all branches with 𝑎𝑖 coefficients

� the condition 𝑎𝑖 = 0 implies that all the poles of a FIR filter are at 𝑧 = 0

Example: let us realize

𝐻 (𝑧) = 𝑧3 + 4𝑧2 + 5𝑧 + 2

𝑧3

using canonic direct and transposed forms
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we have 𝑏0 = 1, 𝑏1 = 4, 𝑏2 = 5, and 𝑏3 = 2

this filter is basically a tapped delay line; it is also known as a tapped delay line or
transversal filter

Cascade and parallel realizations, complex, and repeated poles: the
considerations and observations for cascade and parallel realizations as well as
complex and multiple poles are identical to those discussed for LTIC systems
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