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Complex numbers

Rectangular (Cartesian) form

𝑧 = 𝑎 + 𝑗 𝑏

■ number 𝑎 is the real part of 𝑧 denoted by Re 𝑧 = 𝑎

■ number 𝑏 is the imaginary part of 𝑧 denoted by Im 𝑧 = 𝑏

■ 𝑗 is the imaginary number: 𝑗2 = −1 and
√
−1 = ± 𝑗

Polar form
𝑧 = 𝑟𝑒 𝑗 \ = 𝑟 \

■ 𝑟 = |𝑧 | > 0 is the magnitude or absolute value of 𝑧

■ \ is the angle of 𝑧

■ \ = 𝑒 𝑗 \
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Rectangular and polar forms relation

using Euler’s formula 𝑒 𝑗 \ = cos \ + 𝑗 sin \, we have

𝑧 = 𝑟𝑒 𝑗 \ = 𝑎 + 𝑗 𝑏

𝑎 = 𝑟 cos \ and 𝑏 = 𝑟 sin \

𝑟 =
√
𝑎2 + 𝑏2 and \ = tan−1 ( 𝑏

𝑎
)

to use tan−1 ( 𝑏
𝑎
), proper attention must be taken to the quadrant:

■ 𝑎 > 0 and 𝑏 > 0 is in first quadrant: 0 < \ < 90◦

■ 𝑎 < 0 and 𝑏 > 0 is in second quadrant: 90◦ < \ < 180◦

■ 𝑎 < 0 and 𝑏 < 0 is in third quadrant: 180◦ < \ < 270◦

■ 𝑎 > 0 and 𝑏 < 0 is in fourth quadrant: 270◦ < \ < 360◦

■ any angle \ is equivalent to \ ± 360◦
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Useful identities

𝑗 =
1

− 𝑗 , 𝑒± 𝑗 𝜋/2 = ± 𝑗 , 𝑒 (𝛼+ 𝑗𝜔)𝑡 = 𝑒𝛼𝑡𝑒 𝑗𝜔𝑡

𝑒± 𝑗2𝜋𝑛 = 1, 𝑒± 𝑗 𝜋+ 𝑗2𝜋𝑛 = −1, (𝑛 integer)
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Complex numbers operations

let 𝑧1 = 𝑎1 + 𝑗 𝑏1 = 𝑟1𝑒
𝑗 \1 and 𝑧2 = 𝑎2 + 𝑗 𝑏2 = 𝑟𝑒 𝑗 \2 , then

Addition

𝑧1 + 𝑧2 = (𝑎1 + 𝑗 𝑏1) + (𝑎2 + 𝑗 𝑏2) = (𝑎1 + 𝑎2) + 𝑗 (𝑏1 + 𝑏2)

we need to convert to rectangular form to add complex numbers

Multiplication

𝑧1𝑧2 = 𝑟1𝑟2𝑒
𝑗 (\1+\2 )

Division

𝑧1

𝑧2
=
𝑟1

𝑟2
𝑒 𝑗 (\1−\2 )

the reciprocal of a complex number is given by
1

𝑧
=
1

𝑟
𝑒− 𝑗 \
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let 𝑧 = 𝑎 + 𝑗 𝑏 = 𝑟𝑒 𝑗 \

Complex conjugate

𝑧∗ = 𝑎 − 𝑗 𝑏 = 𝑟𝑒− 𝑗 \

note that 𝑧𝑧∗ = 𝑧∗𝑧 = |𝑧 |2

Powers and roots

𝑧𝑘 = 𝑟𝑘𝑒 𝑗𝑘 \

𝑧1/𝑘 = 𝑟1/𝑘𝑒 𝑗 \/𝑘

■ there are 𝑘 values for 𝑧1/𝑘 (the 𝑘 th root of 𝑧) since

𝑧1/𝑘 = [𝑟𝑒 𝑗 (\+2𝜋𝑛) ]1/𝑘 = 𝑟1/𝑘𝑒 𝑗 (\+2𝜋𝑛)/𝑘 , 𝑛 = 0, 1, . . . , 𝑘 − 1

■ the value for 𝑘 = 0 is the principal value of 𝑧1/𝑛
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Logarithms of complex numbers: taking log of 𝑧 = 𝑟𝑒 𝑗 \ = 𝑟𝑒 𝑗 (\±2𝜋𝑛) ,
𝑛 = 0, 1, 2, . . ., we have

ln 𝑧 = ln 𝑟 + 𝑗 (\ ± 2𝜋𝑛), 𝑛 = 0, 1, 2, . . .

■ ln 𝑧 for 𝑛 = 0 is the principal value of ln 𝑧 and is denoted by Ln 𝑧

■ properties of logarithms hold for complex arguments

log(𝑧1𝑧2) = log 𝑧1 + log 𝑧2, log(𝑧1/𝑧2) = log 𝑧1 − log 𝑧2

𝑎 (𝑧1+𝑧2 ) = 𝑎𝑧1 × 𝑎𝑧2 , 𝑧𝑐 = 𝑒𝑐 ln 𝑧 , 𝑎𝑧 = 𝑒𝑧 ln 𝑎

Examples: for 𝑛 = 0, 1, 2, . . ., we have

ln 1 = ln(1𝑒± 𝑗2𝜋𝑛) = ± 𝑗2𝜋𝑛, ln(−1) = ln(1𝑒± 𝑗 𝜋 (2𝑛+1) ) = ± 𝑗𝜋(2𝑛 + 1)

ln 𝑗 = ln(𝑒 𝑗 𝜋 (1±4𝑛)/2) = 𝑗𝜋 1±4𝑛
2 , 𝑗 𝑗 = 𝑒 𝑗 ln 𝑗 = 𝑒−𝜋 (1±4𝑛)/2
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Sinusoid

𝑥(𝑡) = 𝐴 cos(2𝜋 𝑓0𝑡 + \)

■ 𝐴 is the amplitude

■ \ is the phase (in degrees of radians)

■ 𝑓0 is the frequency (in Hertz)

■ since cos(𝜙) = cos(𝜙 + 2𝜋𝑛) for any integer 𝑛, the angle 2𝜋 𝑓0𝑡 + \ changes
by 2𝜋 when 𝑡 changes by 1/ 𝑓0; hence there are 𝑓0 repetitions per second

■ 𝑇0 = 1/ 𝑓0 is the period, which is the repetition interval

■ the radian frequency is 𝜔0 = 2𝜋 𝑓0 = 2𝜋/𝑇0
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Sinusoids and phasors

the phasor of the sinusoid 𝐴 cos(𝜔𝑡 + \) is the complex number 𝐴𝑒 𝑗 \ = 𝐴 \

Adding sinusoids

■ two sinusoids having the same frequency can be added using trigonometric
identities or using phasors

𝐴1 cos(𝜔𝑡 + \1) + 𝐴2 cos(𝜔𝑡 + \2) = 𝐴 cos(𝜔𝑡 + \)

■ 𝐴 and \ can computed by using phasors:

𝐴1𝑒
𝑗 \1 + 𝐴2𝑒

𝑗 \2 = 𝐴𝑒 𝑗 \

Example: find cos(𝜔𝑡 + 60𝑜) + 5 cos(𝜔𝑡 − 30𝑜)
■ we have 𝑒 𝑗60

𝑜 + 5𝑒− 𝑗30
𝑜

= 5.099𝑒− 𝑗18.69
𝑜

= 𝐴𝑒 𝑗 \

■ therefore,

cos(𝜔𝑡 + 60𝑜) + 5 cos(𝜔𝑡 − 30𝑜) = 5.099 cos(𝜔𝑡 − 18.69𝑜)
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Exponentials

the exponential function is 𝑒𝛼𝑡

■ for 𝛼 > 0, 𝑒−𝛼𝑡 decays monotonically, and 𝑒𝛼𝑡 grows monotonically with 𝑡

𝑒𝛼𝑡

𝑒−𝛼𝑡

■ exponentials and sinusoids are related as

cos 𝜙 =
1

2
(𝑒 𝑗 𝜙 + 𝑒− 𝑗 𝜙), sin 𝜙 =

1

2 𝑗
(𝑒 𝑗 𝜙 − 𝑒− 𝑗 𝜙)
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Sketching exponentials

■ 𝑒−𝛼𝑡 = 1 at 𝑡 = 0 and at 𝑡 = 1/𝛼, the value drops to 1/𝑒 (37% of its initial
value)

■ the time interval over which the exponential reduces by factor of 𝑒 is called
time constant; thus, time constant of 𝑒−𝛼𝑡 is 𝜏 = 1/𝛼

■ 𝑒−𝛼𝑡 is reduced to 37% of its initial value over any time interval of duration 1
𝛼

𝑒−𝛼𝑡

1
𝛼

2
𝛼

■ monotonically growing exponentials, the waveform increases by a factor 𝑒
over each interval of 1/𝛼 seconds
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Exponentially varying sinusoid

an exponentially varying sinusoid

𝑥(𝑡) = 𝐴𝑒−𝛼𝑡 cos(𝜔0𝑡 + \)

can be sketched by

1. sketching 𝐴𝑒−𝛼𝑡

2. sketching −𝐴𝑒−𝛼𝑡

3. constraining the amplitude of cos(𝜔0𝑡 + \)
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Example: 4𝑒−2𝑡 cos(6𝑡 − 60𝑜)
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Vector

an 𝑛 column vector is an ordered list of 𝑛 numbers, represented by:

𝒂 =


𝑎1
𝑎2
...

𝑎𝑛


■ the 𝑖th entry (or element, coefficient, component) of vector 𝒂 is denoted by 𝑎𝑖

■ the number of entries it contains, 𝑛, is size or dimension

■ we also use 𝒂 = (𝑎1, . . . , 𝑎𝑛) to denote an 𝑛-column vector

■ transpose of an 𝑛-column vector 𝒂 is the row vector

𝒂T = (𝑎1, . . . , 𝑎𝑛)T = [𝑎1 𝑎2 · · · 𝑎𝑛]
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Block (partitioned) vectors

vectors can be stacked (concatenated, partitioned) to create larger vectors

Example: if 𝒂, 𝒃, and 𝒄 are vectors of size 𝑛, 𝑚, 𝑝, then 𝒅 = (𝒂, 𝒃, 𝒄) is the
(𝑚 + 𝑛 + 𝑝)-vector:

𝒅 = (𝒂, 𝒃, 𝒄) =

𝒂
𝒃
𝒄

 = (𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚, 𝑐1, . . . , 𝑐𝑝).

If 𝒂 = (1, 2), 𝒃 = (5, 9), and 𝒅 = (−1, 3), then

𝒅 = (𝒂, 𝒃, 𝒄) = (1, 2, 5, 9,−1, 3)
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Special vectors

One and zero vectors

1 = (1, 1, . . . , 1), 0 = (0, 0, . . . , 0)

(size follow from context or we write 1𝑛, 0𝑛)

Unit vectors

■ for any integer 𝑘 , the unit vectors are 𝒆1, 𝒆2, . . . , 𝒆𝑘

■ 𝒆𝑖 is a vector with zero entries except entry 𝑒𝑖 = 1

■ for 𝑘 = 3, we have

𝒆1 =


1
0
0

 , 𝒆2 =


0
1
0

 , 𝒆3 =


0
0
1


vectors and matrices 16



Vector addition

given two 𝑛-vectors 𝒂 and 𝒃 of equal size, we have:

𝒂 + 𝒃 =


𝑎1 + 𝑏1
𝑎2 + 𝑏2

...

𝑎𝑛 + 𝑏𝑛

 , 𝒂 − 𝒃 =


𝑎1 − 𝑏1
𝑎2 − 𝑏2

...

𝑎𝑛 − 𝑏𝑛

 .
Properties

■ commutative: 𝒂 + 𝒃 = 𝒃 + 𝒂

■ associative: (𝒂 + 𝒃) + 𝒄 = 𝒂 + (𝒃 + 𝒄)
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Vector addition

■ the vector 𝒂 − 𝒃 is called the difference between 𝒂 and 𝒃

■ two vectors 𝒂 ∈ R𝑛 and 𝒃 ∈ R𝑛 are equal if 𝒂 − 𝒃 = 0, i.e.,

𝑎𝑖 = 𝑏𝑖 for all 𝑖 = 1, 2, . . . , 𝑛

■ the vector 0 − 𝒂 is denoted by −𝒂

■ the vector 𝒙 that solves the equation

𝒂 + 𝒙 = 𝒃

is 𝒙 = 𝒃 − 𝒂
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Scalar-vector multiplication

for vector 𝒂 ∈ R𝑛 and scalar 𝛼:

𝛼𝒂 = (𝛼𝑎1, 𝛼𝑎2, . . . , 𝛼𝑎𝑛)

Properties

■ distributive: for any real scalars 𝛼 and 𝛽,

𝛼(𝒂 + 𝒃) = 𝛼𝒂 + 𝛼𝒃
(𝛼 + 𝛽)𝒂 = 𝛼𝒂 + 𝛽𝒂

■ associative: 𝛼(𝛽𝒂) = (𝛼𝛽)𝒂; as a convention, we write
𝛼𝛽𝒂 = 𝛼(𝛽𝒂) = (𝛼𝛽)𝒂
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Matrix

an 𝑚 × 𝑛 matrix is a rectangular array of numbers, written as

𝑨 =


𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛


■ 𝑎𝑖 𝑗 is the 𝑖, 𝑗 entry (element) located at 𝑖th row and 𝑗 th column

■ size or dimension is 𝑚 × 𝑛 (#rows × # columns)

■ transpose of 𝑨 is the 𝑛 × 𝑚 matrix 𝑨T with entries 𝑎T
𝑖 𝑗
= 𝑎 𝑗𝑖 ; for example[

1 4 0
2 6 3

]T

=

[
1 2
4 6
0 3

]
■ a matrix 𝑨 is square if 𝑚 = 𝑛 (𝑛 × 𝑛 matrix); a square matrix is symmetric
𝑨 = 𝑨T (𝑎𝑖 𝑗 = 𝑎 𝑗𝑖)
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Special matrices

a zero matrix is a matrix with all zero elements, denoted by 0

■ the size of the zero matrix is determined from the context

■ the zero matrix of size 𝑚 × 𝑛 is sometimes written as 0𝑚×𝑛

a diagonal matrix is square matrix (size 𝑛 × 𝑛) whose elements are zero
everywhere except on the main diagonal; for example

2 0 0
0 3 0
0 0 7

 ≜ diag(2, 1, 5)

the identity matrix of size 𝑛, denoted by 𝑰 is the diagonal matrix with unity for all
its diagonal elements
■ size determined from context or written as 𝑰𝑛
■ examples”

𝑰2 =

[
1 0
0 1

]
, 𝑰3 =


1 0 0
0 1 0
0 0 1


are the 2 × 2 and 3 × 3 identity matrices
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Block (partitioned) matrices

Matrices can be represented in term of submatrices

Example: is 2 × 2 block matrix

𝑨 =

[
𝑩 𝑪
𝑫 𝑬

]
■ entries 𝑩,𝑪, 𝑫, and 𝑬 are called blocks or submatrices

■ the submatrices can be referred to by their block row and column indices; for
example, 𝑪 is the (1, 2) block of 𝑨

■ block matrices must have compatible dimensions

■ if

𝑩 =
[
0 2 3

]
, 𝑪 = [−1], 𝑫 =

[
2 2 1
1 3 5

]
, 𝑬 =

[
4
4

]
then

𝑨 =

[
𝑩 𝑪
𝑫 𝑬

]
=


0 2 3 −1
2 2 1 4
1 3 5 4
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Columns and rows of a matrix

a matrix can be viewed as a block matrix with row/column vector blocks

■ 𝑚 × 𝑛 matrix 𝑨 can be written as

𝑨 =
[
𝒂1 𝒂2 · · · 𝒂𝑛

]
where 𝒂 𝑗 denotes the 𝑗 th column 𝒂 𝑗 = (𝑎1 𝑗 , . . . , 𝑎𝑚𝑗 ), for 𝑗 = 1, . . . , 𝑛

■ 𝑚 × 𝑛 matrix 𝑨 can be written as

𝑨 =


�̄�T
1

�̄�T
2
...

�̄�T
𝑚

 ,
where �̄�T

𝑖
is the 𝑖th rows defined as �̄�T

𝑖
=
[
𝑎𝑖1 · · · 𝑎𝑖𝑛

]
for 𝑖 = 1, . . . , 𝑚
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Matrix addition

two matrices 𝑨, 𝑩 of the same size (𝑚 × 𝑛) can be added together element wise

𝑨 + 𝑩 =


𝑎11 + 𝑏11 𝑎12 + 𝑏12 · · · 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏21 𝑎22 + 𝑏22 · · · 𝑎2𝑛 + 𝑏2𝑛

.

.

.
.
.
.

. . .
.
.
.

𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 · · · 𝑎𝑚𝑛 + 𝑏𝑚𝑛


Properties.

■ commutativity: 𝑨 + 𝑩 = 𝑩 + 𝑨

■ associativity: (𝑨 + 𝑩) + 𝑪 = 𝑨 + (𝑩 + 𝑪). We thus write both as 𝑨 + 𝑩 + 𝑪

■ transpose of sum: (𝑨 + 𝑩)T = 𝑨T + 𝑩T
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Scalar matrix multiplication

for matrix 𝑨 and scalar 𝛼, we have

𝛼𝑨 =


𝛼𝑎11 𝛼𝑎12 · · · 𝛼𝑎1𝑛
𝛼𝑎21 𝛼𝑎22 · · · 𝛼𝑎2𝑛
.
.
.

.

.

.
. . .

.

.

.

𝛼𝑎𝑚1 𝛼𝑎𝑚2 · · · 𝛼𝑎𝑚𝑛


Example

(−3)
[
0 −1
1 −2

]
=

[
0 3

−3 6

]
Properties.

■ (𝛼𝑨)T = 𝛼𝑨T for any scalar 𝛼

■ for scalars 𝛼 and 𝛽, it holds that

(𝛼 + 𝛽)𝑨 = 𝛼𝑨 + 𝛽𝑨, (𝛼𝛽)𝑨 = 𝛼(𝛽𝑨)
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Matrix-matrix multiplication

for 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵, then

𝑪 = 𝑨𝑩 =


𝑐11 𝑐12 · · · 𝑐1𝑛
𝑐21 𝑐22 · · · 𝑐2𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑐𝑚1 𝑐𝑚2 · · · 𝑐𝑚𝑛


is the 𝑚 × 𝑝 matrix with entries:

𝑐𝑖 𝑗 =

𝑛∑︁
ℓ=1

𝑎𝑖ℓ𝑏ℓ 𝑗 = 𝑎𝑖1𝑏1 𝑗 + 𝑎𝑖2𝑏2 𝑗 + · · · + 𝑎𝑖𝑛𝑏𝑛 𝑗 .

■ size of 𝐴 and 𝐵 must be compatible (conformable):

# columns in 𝑨 = # rows in 𝑩

■ the order of matrix multiplication is not commutative in general
– 𝑨𝑩 is not always the same as 𝑩𝑨
– if 𝑨 is an 𝑚 × 𝑝 matrix and 𝑩 is an 𝑝 × 𝑛 matrix, then 𝑩𝑨 does not make sense

if 𝑚 ≠ 𝑛
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Examples

■ [
1 1 1
2 2 2

] 
0 1
2 3
4 5

 =
[
6 9
12 18

]
■ for an 𝑚 × 𝑛 matrix, we have

𝑨𝑰𝑛 = 𝑰𝑚𝑨 = 𝑨

vectors and matrices 27



Properties of matrix multiplication

(for scalar 𝛼 and matrices 𝑨, 𝑩, and 𝑪)

■ associativity
(𝑨𝑩)𝑪 = 𝑨(𝑩𝑪),

which we write it as 𝑨𝑩𝑪.

■ associativity with scalar multiplication

𝛼(𝑨𝑩) = (𝛼𝑨)𝑩 = 𝑨(𝛼𝑩)

We thus write it as 𝛼𝑨𝑩

■ distributivity with addition

𝑨(𝑩 + 𝑪) = 𝑨𝑩 + 𝑨𝑪 and (𝑨 + 𝑩)𝑪 = 𝑨𝑪 + 𝑩𝑪

■ transpose of product
(𝑨𝑩)T = 𝑩T𝑨T
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Matrix-vector multiplication

for 𝑚 × 𝑛 matrix 𝑨 and 𝑛-vector 𝒙, we have

𝒚 = 𝑨𝒙 =


𝑦1
𝑦2
...

𝑦𝑚

 , 𝑦𝑖 =

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗

■ 𝒚 is an 𝑚-vector

■ example: [
0 1 2

−1 0 −1

] [1
2
3

]
=

[
(0) (1) + (1) (2) + (2) (3)

(−1) (1) + (0) (2) + (−1) (3)

]
=

[
8

−4

]
Properties.

1. distributive: 𝑨(𝒖 + v) = 𝑨𝒖 + 𝑨𝒗 and (𝑨 + 𝑩)𝒖 = 𝑨𝒖 + 𝑩𝒖 where 𝒖, 𝒗 are
vectors and 𝑨, 𝑩 are matrices

2. (𝛼𝑨)𝒖 = 𝛼(𝑨𝒖) = 𝑨(𝛼𝒖); as convention, we write it as 𝛼𝑨𝒖

vectors and matrices 29



Matrix determinant

𝑖 𝑗 th submatrix of 𝑨: if 𝑨 is an 𝑛 × 𝑛 matrix, then the 𝑖 𝑗 th submatrix of 𝑨,
denoted by 𝑨𝑖 𝑗 , is the (𝑚 − 1) × (𝑚 − 1) obtained by deleting row 𝑖 and column
𝑗 of 𝑨; for example,

𝑨 =


1 2 3
4 5 6
7 8 9

 , 𝑨12 =

[
4 6
7 9

]
, 𝑨32 =

[
1 3
4 6

]

Determinant: the determinant of a matrix is computed a follows; pick any value
of 𝑖 (𝑖 = 1, 2, . . . , 𝑛) and compute

|𝑨| =
𝑛∑︁
𝑗=1

(−1)𝑖+ 𝑗 |𝑨𝑖 𝑗 |𝑎𝑖 𝑗 ,

■ the quantities |𝑨𝑖 𝑗 | and (−1)𝑖+ 𝑗 |𝑨𝑖 𝑗 | are called the minor and cofactor of
element 𝑎𝑖 𝑗

■ for 𝑛 × 𝑛 matrices 𝑨, 𝑩, |𝑨𝑩 | = |𝑨| |𝑩 |
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Example

a) for a scalar matrix 𝑨 = [𝑎11], we have |𝑨| = 𝑎11
b) for a 2 × 2 matrix, the determinant is

|𝑨| =
���� [𝑎11 𝑎12
𝑎21 𝑎22

] ���� = 𝑎11𝑎22 − 𝑎21𝑎12
c) for the matrix 𝑨 =


1 2 3
4 5 6
7 8 9


– we have for 𝑖 = 1

𝑨11 =

[
5 6
8 9

]
, 𝑨12 =

[
4 6
7 9

]
, 𝑨13 =

[
4 5
7 8

]
– thus, the determinant is

|𝑨| = (−1)2𝑎11 |𝑨11 | + (−1)3𝑎12 |𝑨12 | + (−1)4𝑎13 |𝑨13 |
= 𝑎11 |𝑨11 | − 𝑎12 |𝑨12 | + 𝑎13 |𝑨13 |
= 1(−3) − 2(−6) + 3(−3) = 0
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Properties of determinants

Multiplication of a single row/column by a constant: if a single row or column
of a matrix, 𝑨, is multiplied by a constant, 𝑘 , forming the matrix, �̃�, then

det �̃� = 𝑘 det 𝑨

Multiplication of all elements by a constant

det(𝑘𝑨) = 𝑘𝑛 det 𝑨

Transpose
det 𝑨𝑇 = det 𝑨

Determinant of the product of square matrices

det 𝑨𝑩 = det 𝑨 det 𝑩

det 𝑨𝑩 = det 𝑩𝑨
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Inverse

the matrix 𝑨−1 is said to be the inverse of the 𝑛 × 𝑛 matrix 𝑨 if it satisfies

𝑨𝑨−1 = 𝑨−1𝑨 = 𝐼𝑛

■ invertible matrices must be square

■ if 𝑨 has an inverse 𝑨−1, then the inverse of 𝑨−1 is 𝑨

■ for a non-zero scalar 𝑎, the inverse is the number 𝑥 such that 𝑎𝑥 = 1, which
we denote by 𝑥 = 1/𝑎 = 𝑎−1

■ if the inverse of 𝐴 exists, then the matrix is said to be invertible or nonsingular

■ a square matrix 𝑨 is invertible if and only if the determinant is nonzero
(|𝑨| ≠ 0)
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Example

a) the identity matrix 𝑰 is invertible, with inverse 𝑰−1 = 𝑰 since

(𝑰)𝑰 = 𝑰

b) any 2 × 2 matrix 𝑨 is invertible if and only if 𝑎11𝑎22 ≠ 𝑎12𝑎21, with inverse

𝑨−1 =

[
𝑎11 𝑎12
𝑎21 𝑎22

]−1
=

1

𝑎11𝑎22 − 𝑎12𝑎21

[
𝑎22 −𝑎12
−𝑎21 𝑎11

]
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c) a diagonal matrix

𝑫 =


𝑑11 0 · · · 0
0 𝑑22 · · · 0
...

...
. . .

...

0 0 · · · 𝑑𝑛𝑛


is invertible if and only if 𝑑𝑖𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑛, and

𝑫−1 =


1/𝑑11 0 · · · 0
0 1/𝑑22 · · · 0
...

...
. . .

...

0 0 · · · 1/𝑑𝑛𝑛
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Inverse properties

■ Inverse of transpose: if 𝐴 is invertible, its transpose 𝐴T is also invertible with
inverse:

(𝑨T)−1 = (𝑨−1)T

■ Inverse of matrix product: if both 𝑨 and 𝑩 are invertible square matrices of
the same size, then 𝑨𝑩 is invertible, and

(𝑨𝑩)−1 = 𝑩−1𝑨−1

■ Negative matrix power: let 𝑨 be a square invertible matrix, then

(𝑨𝑝)−1 = (𝑨−1) 𝑝

for any integer 𝑝
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Square linear equation

set or system of 𝑛 linear equations with 𝑛 variables 𝑥1, . . . , 𝑥𝑛:

𝑎11𝑥1 + 𝑎12𝑥2 + · · · + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + · · · + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + · · · + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

■ scalars 𝑎𝑖 𝑗 are called coefficients and the numbers 𝑏𝑖 are called
right-hand-sides.

■ using matrix notation:
𝑨𝒙 = 𝒃,

where the 𝑛 × 𝑛 matrix 𝐴 is called the coefficient matrix and the 𝑚 vector 𝒃 is
called the right-hand side
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Cramers’s rule

if the determinant |𝑨| ≠ 0, then the square linear system 𝑨𝒙 = 𝒃 has a unique
solution given by Cramer’s formula

𝑥𝑘 =
|𝑫𝑘 |
|𝑨| , 𝑘 = 1, 2, . . . , 𝑛

■ 𝑫𝑘 is the matrix obtained replacing the 𝑘 th column of 𝑨 by the right-hand
side (column) 𝒃

■ by definition, we know that
𝒙 = 𝑨−1𝒃

it follows from Cramer’s formula (with some algebra) that

𝑨−1
=

1

|𝑨|


|𝑨11 | |𝑨21 | · · · |𝑨𝑛1 |
|𝑨12 | |𝑨22 | · · · |𝑨𝑛1 |
.
.
.

.

.

.
. . .

.

.

.

|𝑨1𝑛 | |𝑨2𝑛 | · · · |𝑨𝑛𝑛 |

︸                                   ︷︷                                   ︸
adj 𝑨
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Rank of a matrix

the rank of a matrix, 𝑨, equals the number of linearly independent rows or
columns

rank can be found by finding the highest-order square submatrix that is
nonsingular; for example,

𝑨 =


1 −5 2
4 7 −5

−3 15 −6


since the determinant is zero, the 3 × 3 matrix is singular; choosing the submatrix

𝑨33 =

[
1 −5
4 7

]
whose determinant equals 27, we conclude that rank 𝑨 = 2
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Eigenvalues and eigenvectors

for an (𝑛 × 𝑛) square matrix A, any vector x (x ≠ 0) that satisfies the equation

Ax = _x

is an eigenvector, and _ is the corresponding eigenvalue

■ eigenvalues are solution of the characteristic equation

𝑄(_) = |_I −A| = _𝑛 + 𝑎𝑛−1_𝑛−1 + · · · + 𝑎1_ + 𝑎0_0 = 0

■ the polynomial 𝑄(_) is called the characteristic polynomial of matrix A

Cayley-Hamilton theorem: every 𝑛 × 𝑛 matrix A satisfies its own characteristic
equation

Q(A) = A𝑛 + 𝑎𝑛−1A𝑛−1 + · · · + 𝑎1A + 𝑎0A0 = 0
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Derivative and integral of matrix

A(𝑡) =
[
𝑎𝑖 𝑗 (𝑡)

]
𝑚×𝑛

the derivative and integral of a 𝑨 with respect to 𝑡 are defined entrywise:

𝑑

𝑑𝑡
[A(𝑡)] =

[
𝑑

𝑑𝑡
𝑎𝑖 𝑗 (𝑡)

]
𝑚×𝑛

or ¤A(𝑡) =
[
¤𝑎𝑖 𝑗 (𝑡)

]
𝑚×𝑛

∫
A(𝑡)𝑑𝑡 =

[∫
𝑎𝑖 𝑗 (𝑡)𝑑𝑡

]
𝑚×𝑛
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Example:

A(𝑡) =
[
𝑒−2𝑡 sin 𝑡
𝑒𝑡 𝑒−𝑡 + 𝑒−2𝑡

]
the derivative of 𝑨(𝑡) is

¤A(𝑡) =
[
−2𝑒−2𝑡 cos 𝑡
𝑒𝑡 −𝑒−𝑡 − 2𝑒−2𝑡

]
the integral of 𝑨(𝑡) is∫

A(𝑡)𝑑𝑡 =
[ ∫

𝑒−2𝑡𝑑𝑡
∫
sin 𝑑𝑡∫

𝑒𝑡𝑑𝑡
∫ (
𝑒−𝑡 + 2𝑒−2𝑡

)
𝑑𝑡

]
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Derivative properties

Linearity

■
𝑑

𝑑𝑡
(A + B) = 𝑑A

𝑑𝑡
+ 𝑑B
𝑑𝑡

■
𝑑

𝑑𝑡
(𝑐A) = 𝑐 𝑑A

𝑑𝑡

Matrix product

■
𝑑

𝑑𝑡
(AB) = 𝑑A

𝑑𝑡
B +A

𝑑B

𝑑𝑡
= ¤AB +A ¤B

■ If we let B = A−1, we obtain

𝑑

𝑑𝑡

(
AA−1) = 𝑑A

𝑑𝑡
A−1 +A

𝑑

𝑑𝑡
A−1 = 0

hence

𝑑

𝑑𝑡

(
A−1) = −A−1 𝑑A

𝑑𝑡
A−1
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Functions of a matrix

consider the function:

𝑓 (_) = 𝛼0 + 𝛼1_ + 𝛼2_22 + · · · =
∞∑︁
𝑖=0

𝛼𝑖_
𝑖

if _ is an eigenvalue of A, then from characteristic equation, we have

_𝑛 = −𝑎𝑛−1_𝑛−1 − 𝑎𝑛−2_𝑛−2 − · · · − 𝑎1_ − 𝑎0

hence _𝑛+𝑘 can be expressed in terms of _𝑛−1, _𝑛−2, . . . , _ for any 𝑘 ; therefore,

𝑓 (_) = 𝛽0 + 𝛽1_ + 𝛽2_2 + · · · + 𝛽𝑛−1_𝑛−1

for some 𝛽𝑖 and
𝑓 (_1)
𝑓 (_2)
...

𝑓 (_𝑛)


=


1 _1 _21 · · · _𝑛−11

1 _2 _22 · · · _𝑛−12
...

...
... · · ·

...

1 _𝑛 _2𝑛 · · · _𝑛−1𝑛




𝛽0
𝛽1
...

𝛽𝑛−1
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if we assume that the eigenvalues _1, _2, . . . , _𝑛 are distinct, then:
𝛽0
𝛽1
...

𝛽𝑛−1


=


1 _1 _21 · · · _𝑛−11

1 _2 _22 · · · _𝑛−12
...

...
... · · ·

...

1 _𝑛 _2𝑛 · · · _𝑛−1𝑛


−1 

𝑓 (_1)
𝑓 (_2)
...

𝑓 (_𝑛)


now if 𝑓 (A) is a function of a square matrix A:

𝑓 (A) = 𝛼0I + 𝛼1A + 𝛼2A2 + · · · =
∞∑︁
𝑖=0

𝛼𝑖A
𝑖

then using Cayley-Hamilton theorem, we can show that

𝑓 (A) = 𝛽0I + 𝛽1A + 𝛽2A2 + · · · + 𝛽𝑛−1A𝑛−1 =

𝑛−1∑︁
𝑖=0

𝛽𝑖A
𝑖

where the coefficients 𝛽𝑖 are found as before (if some of the eigenvalues are
repeated (multiple roots), the results should be modified)
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Exponential of a matrix

𝑒A𝑡 = I +A𝑡 + A2𝑡2

2!
+ · · · + A𝑛𝑡𝑛

𝑛!
+ · · · =

∞∑︁
𝑘=0

A𝑘 𝑡𝑘

𝑘!

we have

𝑒A𝑡 =

𝑛−1∑︁
𝑖=1

𝛽𝑖A
𝑖

where 
𝛽0
𝛽1
...

𝛽𝑛−1


=


1 _1 _21 · · · _𝑛−11

1 _2 _22 · · · _𝑛−12
...

...
... · · ·

...

1 _𝑛 _2𝑛 · · · _𝑛−1𝑛


−1 

𝑒_1𝑡

𝑒_2𝑡

...

𝑒_𝑛𝑡
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Example 1

compute 𝑒A𝑡 for the case A =

[
0 1
−2 −3

]
Solution: the characteristic equation is

|_I −A| =
���� _ −1
2 _ + 3

���� = _2 + 3_ + 2 = (_ + 1) (_ + 2) = 0

hence, the eigenvalues are _1 = −1, _2 = −2, and[
𝛽0
𝛽1

]
=

[
1 −1
1 −2

]−1 [
𝑒−𝑡

𝑒−2𝑡

]
=

[
2 −1
1 −1

] [
𝑒−𝑡

𝑒−2𝑡

]
=

[
2𝑒−𝑡 − 𝑒−2𝑡
𝑒−𝑡 − 𝑒−2𝑡

]
therefore,

𝑒A𝑡 = 𝛽0I + 𝛽1A =
(
2𝑒−𝑡 − 𝑒−2𝑡

) [ 1 0
0 1

]
+
(
𝑒−𝑡 − 𝑒−2𝑡

) [ 0 1
−2 −3

]
=

[
2𝑒−𝑡 − 𝑒−2𝑡 𝑒−𝑡 − 𝑒−2𝑡

−2𝑒−𝑡 + 2𝑒−2𝑡 −𝑒−𝑡 + 2𝑒−2𝑡

]
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Matrix power

we can express A𝑘 as

A𝑘 = 𝛽0I + 𝛽1A + · · · + 𝛽𝑛−1A𝑛−1

where 
𝛽0
𝛽1
...

𝛽𝑛−1


=


1 _1 _21 · · · _𝑛−11

1 _2 _22 · · · _𝑛−12
...

...
... · · ·

...

1 _𝑛 _2𝑛 · · · _𝑛−1𝑛


−1 

_𝑘1
_𝑘2
...

_𝑘𝑛
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Rational functions

a rational function 𝐹 (𝑠) can be expressed as

𝐹 (𝑠) = 𝑎𝑚𝑠
𝑚 + 𝑎𝑚−1𝑠𝑚−1 + · · · + 𝑎1𝑠 + 𝑎0

𝑏𝑛𝑠
𝑛 + 𝑏𝑛−1𝑠𝑛−1 + · · · + 𝑏1𝑠 + 𝑏0

=
𝑁 (𝑠)
𝐷 (𝑠)

■ 𝑎 and 𝑏 are real constants, and 𝑚 and 𝑛 are positive integers

■ the function 𝐹 (𝑠) is proper if 𝑚 < 𝑛 and improper if 𝑚 ≥ 𝑛
■ only a proper rational function can be expanded as a sum of partial fractions

■ for an improper function 𝐹 (𝑠), we can always separate it into a sum of a
polynomial in 𝑠 and a proper function
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Improper functions

Example: consider the improper function

𝐹 (𝑠) = 2𝑠3 + 9𝑠2 + 11𝑠 + 2

𝑠2 + 4𝑠 + 3

we can divide the numerator by the denominator:

2𝑠 + 1

𝑠2 + 4𝑠 + 3
)

2𝑠3 + 9𝑠2 + 11𝑠 + 2
− 2𝑠3 − 8𝑠2 − 6𝑠

𝑠2 + 5𝑠 + 2
− 𝑠2 − 4𝑠 − 3

𝑠 − 1

therefore, 𝐹 (𝑠) can be expressed as

𝐹 (𝑠) = 2𝑠3 + 9𝑠2 + 11𝑠 + 2

𝑠2 + 4𝑠 + 3
= 2𝑠 + 1︸︷︷︸

polynomial in 𝑠

+ 𝑠 − 1

𝑠2 + 4𝑠 + 3︸        ︷︷        ︸
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Partial fraction expansion

we can factor the denominator of 𝐹 (𝑠) and express it as

𝐹 (𝑠) = 𝑁 (𝑠)
𝐷 (𝑠) =

𝑁 (𝑠)
(𝑠 − _1) (𝑠 − _2) . . . (𝑠 − _𝑛)

■ _1, . . . , _𝑛 are the roots of the characteristic equations 𝐷 (𝑠) = 0

■ for each multiple root of 𝐷 (𝑠) of multiplicity 𝑟 , the expansion contains 𝑟 terms

Example:
𝑠 + 6

𝑠(𝑠 + 3) (𝑠 + 1)2 ,

the denominator has four roots; two distinct at 𝑠 = 0 and 𝑠 = −3 and multiple root
of multiplicity 2 occurs at 𝑠 = −1; thus the partial fraction expansion of this
function takes the form

𝑠 + 6

𝑠(𝑠 + 3) (𝑠 + 1)2 =
𝐾1

𝑠
+ 𝐾2

𝑠 + 3
+ 𝐾3

(𝑠 + 1)2 + 𝐾4

𝑠 + 1
.
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Example: method of clearing fractions

obtain a partial fraction expansion of

𝐹 (𝑠) = 𝑠3 + 3𝑠2 + 4𝑠 + 6

(𝑠 + 1) (𝑠 + 2) (𝑠 + 3)2

Solution: 𝐹 (𝑠) can be expressed as a sum of partial fractions:

𝐹 (𝑠) = 𝑠3 + 3𝑠2 + 4𝑠 + 6

(𝑠 + 1) (𝑠 + 2) (𝑠 + 3)2 =
𝐾1

𝑠 + 1
+ 𝐾2

𝑠 + 2
+ 𝐾3

𝑠 + 3
+ 𝐾4

(𝑠 + 3)2

to find the constants 𝐾𝑖 , we clear fractions by multiplying both sides by
(𝑠 + 1) (𝑠 + 2) (𝑠 + 3)2:

𝑠3 + 3𝑠2 + 4𝑠 + 6 = 𝐾1

(
𝑠3 + 8𝑠2 + 21𝑠 + 18

)
+ 𝐾2

(
𝑠3 + 7𝑠2 + 15𝑠 + 9

)
+ 𝐾3

(
𝑠3 + 6𝑠2 + 11𝑠 + 6

)
+ 𝐾4

(
𝑠2 + 3𝑠 + 2

)
= 𝑠3 (𝐾1 + 𝐾2 + 𝐾3) + 𝑠2 (8𝐾1 + 7𝐾2 + 6𝐾3 + 𝐾4)
+ 𝑥 (21𝐾1 + 15𝐾2 + 11𝐾3 + 3𝐾4) + (18𝐾1 + 9𝐾2 + 6𝐾3 + 2𝐾4)
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equating coefficients of similar powers on both sides yields

𝐾1 + 𝐾2 + 𝐾3 = 1

8𝐾1 + 7𝐾2 + 6𝐾3 + 𝐾4 = 3

21𝐾1 + 15𝐾2 + 11𝐾3 + 3𝐾4 = 4

18𝐾1 + 9𝐾2 + 6𝐾3 + 2𝐾4 = 6

solving these four equations gives

𝐾1 = 1, 𝐾2 = −2, 𝐾3 = 2, 𝐾4 = −3

hence,

𝐹 (𝑠) = 1

𝑠 + 1
− 2

𝑠 + 2
+ 2

𝑠 + 3
− 3

(𝑠 + 3)2

■ this method is straightforward but cumbersome

■ we next develop easier methods
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The Method of residues: distinct factors

Distinct factors: suppose 𝐹 (𝑠) = 𝑁 (𝑠)/𝐷 (𝑠) (𝑚 < 𝑛)

𝐹 (𝑠) = 𝑁 (𝑠)
𝐷 (𝑠) =

𝑁 (𝑠)
(𝑠 − _1) (𝑠 − _2) · · · (𝑠 − _𝑛)

=
𝐾1

𝑠 − _1
+ 𝐾2

𝑠 − _2
+ · · · + 𝐾𝑛

𝑠 − _𝑛
where _𝑖 distinct

Method of residues: we can determine the coefficient 𝐾 𝑗 by:

𝐾 𝑗 = (𝑠 − _ 𝑗 )𝐹 (𝑠)
��
𝑠=_ 𝑗

𝑗 = 1, 2, . . . , 𝑛

this procedure is also called the Heaviside “cover-up” method
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Example: distinct real factors

𝐹 (𝑠) = 2𝑠2 + 9𝑠 − 11

(𝑠 + 1) (𝑠 − 2) (𝑠 + 3)

=
𝐾1

𝑠 + 1
+ 𝐾2

𝑠 − 2
+ 𝐾3

𝑠 + 3

to find 𝐾1 corresponding to the factor (𝑠 + 1), we cancel (cover-up) the term
(𝑠 + 1) in the denominator of 𝐹 (𝑠) and then substitute 𝑠 = −1:

𝐾1 =
2𝑠2 + 9𝑠 − 11

���(𝑠 + 1) (𝑠 − 2) (𝑠 + 3)

����
𝑠=−1

=
2 − 9 − 11

(−1 − 2) (−1 + 3) =
−18
−6 = 3
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similarly, to compute 𝐾2, we cover up the factor (𝑠 − 2) in 𝐹 (𝑠) and let 𝑠 = 2 in
the remaining function, as follows:

𝐾2 =
2𝑠2 + 9𝑠 − 11

(𝑠 + 1)����(𝑠 − 2) (𝑠 + 3)

����
𝑠=2

=
8 + 18 − 11

(2 + 1) (2 + 3) =
15

15
= 1

and

𝐾3 =
2𝑠2 + 9𝑠 − 11

(𝑠 + 1) (𝑠 − 2)���(𝑠 + 3)

����
𝑠=−3

=
18 − 27 − 11

(−3 + 1) (−3 − 2) =
−20
10

= −2

therefore,

𝐹 (𝑠) = 2𝑠2 + 9𝑠 − 11

(𝑠 + 1) (𝑠 − 2) (𝑠 + 3) =
3

𝑠 + 1
+ 1

𝑠 − 2
− 2

𝑠 + 3
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Example: distinct complex factors

complex factors conjugate can be treated the same as distinct factors

𝐹 (𝑠) = 4𝑠2 + 2𝑠 + 18

(𝑠 + 1) (𝑠 + 2 − 𝑗3) (𝑠 + 2 + 𝑗3) =
𝐾1

𝑠 + 1
+ 𝐾2

𝑠 + 2 − 𝑗3
+ 𝐾3

𝑠 + 2 + 𝑗3
we have

𝐾1 =
4𝑠2 + 2𝑠 + 18

���(𝑠 + 1)
(
𝑠2 + 4𝑠 + 13

) ����
𝑠=−1

= 2

𝐾2 =
4𝑠2 + 2𝑠 + 18

(𝑠 + 1)((((((𝑠 + 2 − 𝑗3) (𝑠 + 2 + 𝑗3)

����
𝑠=−2+ 𝑗3

= 1 + 𝑗2 =
√
5𝑒 𝑗63.43

◦

𝐾3 =
4𝑠2 + 2𝑠 + 18

(𝑠 + 1) (𝑠 + 2 − 𝑗3)((((((𝑠 + 2 + 𝑗3)

����
𝑠=−2− 𝑗3

= 1 − 𝑗2 =
√
5𝑒− 𝑗63.43◦

therefore

𝐹 (𝑠) = 2

𝑠 + 1
+
√
5𝑒 𝑗63.43

◦

𝑠 + 2 − 𝑗3
+
√
5𝑒− 𝑗63.43

◦

𝑠 + 2 + 𝑗3

■ if the coefficients of a rational function are real, then coefficients
corresponding to the complex-conjugate factors are conjugates of each other

■ in such a case, we need to compute only one of the coefficients
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Quadratic factors

it is more convenient to combine the two terms arising from complex-conjugate
factors into one quadratic factor

Example: 𝐹 (𝑠) the previous example can be expressed as

𝐹 (𝑠) = 4𝑠2 + 2𝑠 + 18

(𝑠 + 1) (𝑠2 + 4𝑠 + 13) =
2

𝑠 + 1
+ 𝐴𝑠 + 𝐵
𝑠2 + 4𝑠 + 13

the values of 𝐴 and 𝐵 can be determined by clearing fractions:

4𝑠2 + 2𝑠 + 18 = 2
(
𝑠2 + 4𝑠 + 13

)
+ (𝐴𝑠 + 𝐵) (𝑠 + 1)

= (2 + 𝐴) 𝑠2 + (8 + 𝐴 + 𝐵) 𝑠 + (26 + 𝐵)

equating terms of similar powers yields 𝐴 = 2, 𝐵 = −8; hence

𝐹 (𝑠) = 4𝑠2 + 2𝑠 + 18

(𝑠 + 1) (𝑠2 + 4𝑠 + 13) =
2

𝑠 + 1
+ 2𝑠 − 8

𝑠2 + 4𝑠 + 13
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Finding quadratic constant using substitution approach: we can also find the
quadratic constants 𝐴 and 𝐵 by substituting convenient values of 𝑠 in both sides

Example:

𝐹 (𝑠) = 4𝑠2 + 2𝑠 + 18

(𝑠 + 1) (𝑠2 + 4𝑠 + 13) =
2

𝑠 + 1
+ 𝐴𝑠 + 𝐵
𝑠2 + 4𝑠 + 13

plugging in 𝑠 = 0 on both sides gives

18

13
= 2 + 𝐵

13
⇒ 𝐵 = −8

to find 𝐴, we can multiply both sides of

4𝑠2 + 2𝑠 + 18

(𝑠 + 1) (𝑠2 + 4𝑠 + 13) =
2

𝑠 + 1
+ 𝐴𝑠 + 𝐵
𝑠2 + 4𝑠 + 13

by 𝑠 and then let 𝑠 → ∞ (when 𝑠 → ∞, only the terms of the highest power are
significant); therefore,

4 = 2 + 𝐴 ⇒ 𝐴 = 2
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Example: depending on the function, we can use other convenient values for 𝑠:

𝐹 (𝑠) = 2𝑠2 + 4𝑠 + 5

𝑥 (𝑠2 + 2𝑠 + 5) =
1

𝑠
+ 𝐴𝑠 + 𝐵
𝑠2 + 2𝑠 + 5

if we plug in 𝑠 = 0, we obtain ∞ on both sides! it is more convenient to use 𝑠 = 1:

11

8
= 1 + 𝐴 + 𝐵

8
or 𝐴 + 𝐵 = 3

we can now choose some other value for 𝑠 (e.g., 𝑠 = 2) to obtain one more
equation to solve for 𝐴 and 𝐵; in this case, a simple method is to multiply both
sides by 𝑠 and then let 𝑠 → ∞ to get

2 = 1 + 𝐴 ⇒ 𝐴 = 1

hence, 𝐵 = 3 − 𝑐1 = 2 and

𝐹 (𝑠) = 1

𝑠
+ 𝑠 + 2

𝑠2 + 2𝑠 + 5
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Repeated factors

if the root _𝑛 = _̂ of 𝐷 (𝑠) = 0, is repeated 𝑟 times, then

𝐹 (𝑠) = 𝑁 (𝑠)
(𝑠 − _̂)𝑟 (𝑠 − _1) (𝑠 − _2) · · · (𝑠 − _𝑛−𝑟 )

=
𝐾1

(𝑠 − _̂)
+ 𝐾2

(𝑠 − _̂)2
+ · · · + 𝐾𝑟

(𝑠 − _̂)𝑟

+ 𝐾1

𝑠 − _1
+ 𝐾2

𝑠 − _2
+ · · · + 𝐾𝑛−𝑟

𝑠 − _𝑛−𝑟

■ coefficients 𝐾1, 𝐾2, . . . , 𝐾𝑛−𝑟 corresponding to the unrepeated factors can
be found using any of the previous methods

■ coefficients 𝐾1, 𝐾2, . . . , 𝐾𝑟 can be obtained by

𝐾ℓ =
1

(𝑟 − ℓ)!
𝑑𝑟−ℓ

𝑑𝑠𝑟−ℓ
[(𝑠 − _)𝑟𝐹 (𝑠)]

����
𝑠=_̂

, ℓ = 1, . . . , 𝑟
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to illustrate, assume 𝑛 = 𝑟 = 4, then

𝐹 (𝑠) = 𝐾1

(𝑠 − _̂)
+ 𝐾2

(𝑠 − _̂)2
+ 𝐾3

(𝑠 − _̂)3
+ 𝐾4

(𝑠 − _̂)4

and
𝐾4 = [(𝑠 − _)𝑟𝐹 (𝑠)] |𝑠=_̂

𝐾3 =
𝑑

𝑑𝑠
[(𝑠 − _)𝑟𝐹 (𝑠)]

����
𝑠=_̂

𝐾2 =
1

2!

𝑑2

𝑑𝑠2
[(𝑠 − _)𝑟𝐹 (𝑠)]

����
𝑠=_̂

𝐾1 =
1

3!

𝑑3

𝑑𝑠3
[(𝑠 − _)𝑟𝐹 (𝑠)]

����
𝑠=_̂
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Example

𝐹 (𝑠) = 4𝑠3 + 16𝑠2 + 23𝑠 + 13

(𝑠 + 1)3 (𝑠 + 2)

=
𝐾1

𝑠 + 1
+ 𝐾2

(𝑠 + 1)2 + 𝐾3

(𝑠 + 1)3 + 𝑘

𝑠 + 2

the coefficient 𝑘 corresponds to unrepeated facor _ = −2, so

𝑘 =
4𝑠3 + 16𝑠2 + 23𝑠 + 13

(𝑠 + 1)3���(𝑠 + 2)

����
𝑠=−2

= 1

to find 𝐾3, we conceal the factor (𝑠 + 1)3 in 𝐹 (𝑠) and let 𝑠 = −1:

𝐾3 =
4𝑠3 + 16𝑠2 + 23𝑠 + 13

����(𝑠 + 1)3 (𝑠 + 2)

����
𝑠=−1

= 2
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to find 𝐾2, we conceal the factor (𝑠 + 1)3 in 𝐹 (𝑠), take the derivative of the
remaining expression, and then let 𝑠 = −1:

𝐾2 =
𝑑

𝑑𝑠

[
4𝑠3 + 16𝑠2 + 23𝑠 + 13

����(𝑠 + 1)3 (𝑠 + 2)

] ����
𝑠=−1

= 1

similarly,

𝐾1 =
1

2!

𝑑2

𝑑𝑠2

[
4𝑠3 + 16𝑠2 + 23𝑠 + 13

����(𝑠 + 1)3 (𝑠 + 2)

] ����
𝑠=−1

= 3

therefore,

𝐹 (𝑠) = 3

𝑠 + 1
+ 1

(𝑠 + 1)2 + 2

(𝑠 + 1)3 + 1

𝑠 + 2
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Combination of residue method and shortcuts

consider the previous example where

𝐹 (𝑠) = 4𝑠3 + 16𝑠2 + 23𝑠 + 13

(𝑠 + 1)3 (𝑠 + 2)

=
𝐾1

𝑠 + 1
+ 𝐾2

(𝑠 + 1)2 + 2

(𝑠 + 1)3 + 1

𝑠 + 2

to avoid taking derivatives, we can multiply both sides of this equation by 𝑠 and
then let 𝑠 → ∞, we can eliminate 𝐾2:

4 = 𝐾1 + 1 =⇒ 𝐾1 = 3

thus,

4𝑠3 + 16𝑠2 + 23𝑠 + 13

(𝑠 + 1)3 (𝑠 + 2) =
3

𝑠 + 1
+ 𝐾2

(𝑠 + 1)2 + 2

(𝑠 + 1)3 + 1

𝑠 + 2

plugging 𝑠 = 0, we have

13

2
= 2 + 𝐾2 + 3 + 1

2
⇒ 𝐾2 = 1
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Improper 𝐹 (𝑠) with 𝑚 = 𝑛

when the numerator and denominator polynomials of 𝐹 (𝑠) have the same degree
(𝑚 = 𝑛):

𝐹 (𝑠) = 𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠𝑛−1 + · · · + 𝑎1𝑠 + 𝑎0

𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 + · · · + 𝑏1𝑠 + 𝑏0
= 𝑎𝑛 +

𝐾1

𝑠 − _1
+ 𝐾2

𝑠 − _2
+ · · · + 𝐾𝑛

𝑠 − _𝑛
■ the coefficients 𝐾1, 𝐾2, . . . , 𝐾𝑛 are computed as if 𝐹 (𝑠) were proper

■ the only difference between the proper and improper case is the appearance
of an extra constant 𝑎𝑛 in the latter
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Example: expand 𝐹 (𝑠) into partial fractions if

𝐹 (𝑠) = 3𝑠2 + 9𝑠 − 20

𝑠2 + 𝑠 − 6
=

3𝑠2 + 9𝑠 − 20

(𝑠 − 2) (𝑠 + 3)

here, 𝑚 = 𝑛 = 2 with 𝑎𝑛 = 𝑎2 = 3; thus,

𝐹 (𝑠) = 3𝑠2 + 9𝑠 − 20

(𝑠 − 2) (𝑠 + 3) = 3 + 𝐾1

𝑠 − 2
+ 𝐾2

𝑠 + 3

in which

𝐾1 =
3𝑠2 + 9𝑠 − 20

(𝑠 − 2) (𝑠 + 3)

����
𝑠=2

=
12 + 18 − 20

(2 + 3) =
10

5
= 2

and

𝐾2 =
3𝑠2 + 9𝑠 − 20

(𝑠 − 2) (𝑠 + 3)

����
𝑠=−3

=
27 − 27 − 20

(−3 − 2) =
−20
−5 = 4

hence,

𝐹 (𝑠) = 3𝑠2 + 9𝑠 − 20

(𝑠 − 2) (𝑠 + 3) = 3 + 2

𝑠 − 2
+ 4

𝑠 + 3
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General improper rational functions

for an improper function 𝐹 (𝑠), we can always separate it into a sum of a
polynomial in 𝑠 and a proper function:

𝐹 (𝑠) =
𝑚−𝑛∑︁
ℓ=0

𝛼ℓ 𝑠
ℓ + 𝑁1 (𝑠)

𝐷 (𝑠)

Example:

𝐹 (𝑠) = 𝑠4 + 13𝑠3 + 66𝑠2 + 200𝑠 + 300

𝑠2 + 9𝑠 + 20

dividing the denominator into the numerator until the remainder is a proper
rational function gives

𝐹 (𝑠) = 𝑠2 + 4𝑠 + 10 + 30𝑠 + 100

𝑠2 + 9𝑠 + 20
,

where the term (30𝑠 + 100)/
(
𝑠2 + 9𝑠 + 20

)
is the remainder
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we expand the proper rational function into a sum of partial fractions:

30𝑠 + 100

𝑠2 + 9𝑠 + 20
=

30𝑠 + 100

(𝑠 + 4) (𝑠 + 5) =
−20
𝑠 + 4

+ 50

𝑠 + 5

hence

𝐹 (𝑠) = 𝑠2 + 4𝑠 + 10 − 20

𝑠 + 4
+ 50

𝑠 + 5
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MATLAB

the partial fraction expansion of rational function 𝐹 (𝑠) = 𝐵(𝑠)/𝐴(𝑠) can be
computed using the residue command in MATALB:

[R,P,K] = residue(B,A)

■ two input vectors B and A specify the polynomial coefficients of the numerator
and denominator, respectively; these vectors are ordered in descending
powers of the independent variable

■ output vector R contains the coefficients of each partial fraction, and vector P
contains the corresponding roots of each partial fraction. For a root repeated
𝑟 times, the 𝑟 partial fractions are ordered in ascending powers

■ when the rational function is not proper, the vector K contains the direct terms,
which are ordered in descending powers of the independent variable
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Example: let us use MATLAB to find the partial fraction expansion of

𝐹 (𝑠) = 𝑠5 + 𝜋
𝑠4 −

√
8𝑠3 +

√
32𝑠 − 4

MATLAB code:

>> [R,P,K] = residue([1 0 0 0 0 pi],[1 -sqrt(8) 0 sqrt(32) -4]);

>> R.’, P.’, K

R = 7.8888 5.9713 3.1107 0.1112

P = 1.4142 1.4142 1.4142 -1.4142

K = 1.0000 2.8284

hence

𝐹 (𝑠) = 𝑠 + 2.8284 + 7.8888

𝑠 −
√
2
+ 5.9713

(𝑠 −
√
2)2

+ 3.1107

(𝑠 −
√
2)3

+ 0.1112

𝑠 +
√
2
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