Signals and System: Background

- complex numbers
- sinusoids and exponentials
- vectors and matrices
- matrix calculus
- partial fraction expansion

Complex numbers

Rectangular (Cartesian) form

$$
z=a+j b
$$

- number a is the real part of z denoted by $\operatorname{Re} z=a$
- number b is the imaginary part of z denoted by $\operatorname{Im} z=b$
- j is the imaginary number: $j^{2}=-1$ and $\sqrt{-1}= \pm j$

Polar form

$$
z=r e^{j \theta}=r \angle \theta
$$

- $r=|z|>0$ is the magnitude or absolute value of z
- θ is the angle of z
- $\angle \theta=e^{j \theta}$

Rectangular and polar forms relation

using Euler's formula $e^{j \theta}=\cos \theta+j \sin \theta$, we have

$$
z=r e^{j \theta}=a+j b
$$

$$
a=r \cos \theta \text { and } b=r \sin \theta
$$

$$
r=\sqrt{a^{2}+b^{2}} \text { and } \theta=\tan ^{-1}\left(\frac{b}{a}\right)
$$

to use $\tan ^{-1}\left(\frac{b}{a}\right)$, proper attention must be taken to the quadrant:

- $a>0$ and $b>0$ is in first quadrant: $0<\theta<90^{\circ}$
- $a<0$ and $b>0$ is in second quadrant: $90^{\circ}<\theta<180^{\circ}$
- $a<0$ and $b<0$ is in third quadrant: $180^{\circ}<\theta<270^{\circ}$
- $a>0$ and $b<0$ is in fourth quadrant: $270^{\circ}<\theta<360^{\circ}$
- any angle θ is equivalent to $\theta \pm 360^{\circ}$

Useful identities

$$
j=\frac{1}{-j}, \quad e^{ \pm j \pi / 2}= \pm j, \quad e^{(\alpha+j \omega) t}=e^{\alpha t} e^{j \omega t}
$$

$$
e^{ \pm j 2 \pi n}=1, \quad e^{ \pm j \pi+j 2 \pi n}=-1, \quad(n \text { integer })
$$

Complex numbers operations

let $z_{1}=a_{1}+j b_{1}=r_{1} e^{j \theta_{1}}$ and $z_{2}=a_{2}+j b_{2}=r e^{j \theta_{2}}$, then

Addition

$$
z_{1}+z_{2}=\left(a_{1}+j b_{1}\right)+\left(a_{2}+j b_{2}\right)=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right)
$$

we need to convert to rectangular form to add complex numbers

Multiplication

$$
z_{1} z_{2}=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}
$$

Division

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}
$$

the reciprocal of a complex number is given by $\frac{1}{z}=\frac{1}{r} e^{-j \theta}$
let $z=a+j b=r e^{j \theta}$

Complex conjugate

$$
z^{*}=a-j b=r e^{-j \theta}
$$

note that $z z^{*}=z^{*} z=|z|^{2}$

Powers and roots

$$
\begin{aligned}
z^{k} & =r^{k} e^{j k \theta} \\
z^{1 / k} & =r^{1 / k} e^{j \theta / k}
\end{aligned}
$$

- there are k values for $z^{1 / k}$ (the k th root of z) since

$$
z^{1 / k}=\left[r e^{j(\theta+2 \pi n)}\right]^{1 / k}=r^{1 / k} e^{j(\theta+2 \pi n) / k}, \quad n=0,1, \ldots, k-1
$$

- the value for $k=0$ is the principal value of $z^{1 / n}$

Logarithms of complex numbers: taking log of $z=r e^{j \theta}=r e^{j(\theta \pm 2 \pi n)}$, $n=0,1,2, \ldots$, we have

$$
\ln z=\ln r+j(\theta \pm 2 \pi n), \quad n=0,1,2, \ldots
$$

- $\ln z$ for $n=0$ is the principal value of $\ln z$ and is denoted by $\operatorname{Ln} z$
- properties of logarithms hold for complex arguments

$$
\begin{aligned}
& \log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}, \quad \log \left(z_{1} / z_{2}\right)=\log z_{1}-\log z_{2} \\
& a^{\left(z_{1}+z_{2}\right)}=a^{z_{1}} \times a^{z_{2}}, \quad z^{c}=e^{c \ln z}, \quad a^{z}=e^{z \ln a}
\end{aligned}
$$

Examples: for $n=0,1,2, \ldots$, we have

$$
\begin{aligned}
\ln 1 & =\ln \left(1 e^{ \pm j 2 \pi n}\right)= \pm j 2 \pi n, & \ln (-1) & =\ln \left(1 e^{ \pm j \pi(2 n+1)}\right)= \pm j \pi(2 n+1) \\
\ln j & =\ln \left(e^{j \pi(1 \pm 4 n) / 2}\right)=j \pi \frac{1 \pm 4 n}{2}, & j^{j} & =e^{j \ln j}=e^{-\pi(1 \pm 4 n) / 2}
\end{aligned}
$$

Outline

- complex numbers
- sinusoids and exponentials
- vectors and matrices
- matrix calculus
- partial fraction expansion

Sinusoid

$$
x(t)=A \cos \left(2 \pi f_{0} t+\theta\right)
$$

- A is the amplitude
- θ is the phase (in degrees of radians)
- f_{0} is the frequency (in Hertz)
- since $\cos (\phi)=\cos (\phi+2 \pi n)$ for any integer n, the angle $2 \pi f_{0} t+\theta$ changes by 2π when t changes by $1 / f_{0}$; hence there are f_{0} repetitions per second
- $T_{0}=1 / f_{0}$ is the period, which is the repetition interval
- the radian frequency is $\omega_{0}=2 \pi f_{0}=2 \pi / T_{0}$

Sinusoids and phasors

the phasor of the sinusoid $A \cos (\omega t+\theta)$ is the complex number $A e^{j \theta}=A \angle \theta$

Adding sinusoids

- two sinusoids having the same frequency can be added using trigonometric identities or using phasors

$$
A_{1} \cos \left(\omega t+\theta_{1}\right)+A_{2} \cos \left(\omega t+\theta_{2}\right)=A \cos (\omega t+\theta)
$$

- A and θ can computed by using phasors:

$$
A_{1} e^{j \theta_{1}}+A_{2} e^{j \theta_{2}}=A e^{j \theta}
$$

Example: find $\cos \left(\omega t+60^{\circ}\right)+5 \cos \left(\omega t-30^{\circ}\right)$

- we have $e^{j 60^{\circ}}+5 e^{-j 30^{\circ}}=5.099 e^{-j 18.69^{\circ}}=A e^{j \theta}$
- therefore,

$$
\cos \left(\omega t+60^{\circ}\right)+5 \cos \left(\omega t-30^{\circ}\right)=5.099 \cos \left(\omega t-18.69^{\circ}\right)
$$

Exponentials

the exponential function is $e^{\alpha t}$

- for $\alpha>0, e^{-\alpha t}$ decays monotonically, and $e^{\alpha t}$ grows monotonically with t

(a)

(b)
- exponentials and sinusoids are related as

$$
\cos \phi=\frac{1}{2}\left(e^{j \phi}+e^{-j \phi}\right), \quad \sin \phi=\frac{1}{2 j}\left(e^{j \phi}-e^{-j \phi}\right)
$$

Sketching exponentials

- $e^{-\alpha t}=1$ at $t=0$ and at $t=1 / \alpha$, the value drops to $1 / e(37 \%$ of its initial value)
- the time interval over which the exponential reduces by factor of e is called time constant, thus, time constant of $e^{-\alpha t}$ is $\tau=1 / \alpha$
- $e^{-\alpha t}$ is reduced to 37% of its initial value over any time interval of duration $\frac{1}{\alpha}$

(a)

(b)
- monotonically growing exponentials, the waveform increases by a factor e over each interval of $1 / \alpha$ seconds

Exponentially varying sinusoid

an exponentially varying sinusoid

$$
x(t)=A e^{-\alpha t} \cos \left(\omega_{0} t+\theta\right)
$$

can be sketched by

1. sketching $A e^{-\alpha t}$
2. sketching $-A e^{-\alpha t}$
3. constraining the amplitude of $\cos \left(\omega_{0} t+\theta\right)$

Example: $4 e^{-2 t} \cos \left(6 t-60^{\circ}\right)$

Outline

- complex numbers
- sinusoids and exponentials
- vectors and matrices
- matrix calculus
- partial fraction expansion

Vector

an n column vector is an ordered list of n numbers, represented by:

$$
\boldsymbol{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

- the i th entry (or element, coefficient, component) of vector \boldsymbol{a} is denoted by a_{i}
- the number of entries it contains, n, is size or dimension
- we also use $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ to denote an n-column vector
- transpose of an n-column vector \boldsymbol{a} is the row vector

$$
\boldsymbol{a}^{\top}=\left(a_{1}, \ldots, a_{n}\right)^{\top}=\left[a_{1} a_{2} \cdots a_{n}\right]
$$

Block (partitioned) vectors

vectors can be stacked (concatenated, partitioned) to create larger vectors

Example: if $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are vectors of size n, m, p, then $\boldsymbol{d}=(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ is the $(m+n+p)$-vector:

$$
\boldsymbol{d}=(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})=\left[\begin{array}{l}
\boldsymbol{a} \\
\boldsymbol{b} \\
\boldsymbol{c}
\end{array}\right]=\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{p}\right)
$$

If $\boldsymbol{a}=(1,2), \boldsymbol{b}=(5,9)$, and $\boldsymbol{d}=(-1,3)$, then

$$
\boldsymbol{d}=(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})=(1,2,5,9,-1,3)
$$

Special vectors

One and zero vectors

$$
\mathbf{1}=(1,1, \ldots, 1), \quad \mathbf{0}=(0,0, \ldots, 0)
$$

(size follow from context or we write $\mathbf{1}_{n}, \mathbf{0}_{n}$)

Unit vectors

- for any integer k, the unit vectors are $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{k}$
- \boldsymbol{e}_{i} is a vector with zero entries except entry $e_{i}=1$
- for $k=3$, we have

$$
\boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Vector addition

given two n-vectors \boldsymbol{a} and \boldsymbol{b} of equal size, we have:

$$
\boldsymbol{a}+\boldsymbol{b}=\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right], \quad \boldsymbol{a}-\boldsymbol{b}=\left[\begin{array}{c}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
\vdots \\
a_{n}-b_{n}
\end{array}\right]
$$

Properties

- commutative: $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}$
- associative: $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$

Vector addition

- the vector $\boldsymbol{a}-\boldsymbol{b}$ is called the difference between \boldsymbol{a} and \boldsymbol{b}
- two vectors $\boldsymbol{a} \in \mathbb{R}^{n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$ are equal if $\boldsymbol{a}-\boldsymbol{b}=\mathbf{0}$, i.e.,

$$
a_{i}=b_{i} \quad \text { for all } i=1,2, \ldots, n
$$

- the vector $\mathbf{0}-\boldsymbol{a}$ is denoted by $-\boldsymbol{a}$
- the vector \boldsymbol{x} that solves the equation

$$
a+x=b
$$

is $\boldsymbol{x}=\boldsymbol{b}-\boldsymbol{a}$

Scalar-vector multiplication

for vector $\boldsymbol{a} \in \mathbb{R}^{n}$ and scalar α :

$$
\alpha \boldsymbol{a}=\left(\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right)
$$

Properties

- distributive: for any real scalars α and β,

$$
\begin{aligned}
\alpha(\boldsymbol{a}+\boldsymbol{b}) & =\alpha \boldsymbol{a}+\alpha \boldsymbol{b} \\
(\alpha+\beta) \boldsymbol{a} & =\alpha \boldsymbol{a}+\beta \boldsymbol{a}
\end{aligned}
$$

- associative: $\alpha(\beta \boldsymbol{a})=(\alpha \beta) \boldsymbol{a}$; as a convention, we write $\alpha \beta \boldsymbol{a}=\alpha(\beta \boldsymbol{a})=(\alpha \beta) \boldsymbol{a}$

Matrix

an $m \times n$ matrix is a rectangular array of numbers, written as

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- $a_{i j}$ is the i, j entry (element) located at i th row and j th column
- size or dimension is $m \times n$ (\#rows $\times \#$ columns)
- transpose of \boldsymbol{A} is the $n \times m$ matrix \boldsymbol{A}^{\top} with entries $a_{i j}^{\top}=a_{j i}$; for example

$$
\left[\begin{array}{lll}
1 & 4 & 0 \\
2 & 6 & 3
\end{array}\right]^{\top}=\left[\begin{array}{ll}
1 & 2 \\
4 & 6 \\
0 & 3
\end{array}\right]
$$

- a matrix \boldsymbol{A} is square if $m=n(n \times n$ matrix); a square matrix is symmetric $\boldsymbol{A}=\boldsymbol{A}^{\top}\left(a_{i j}=a_{j i}\right)$

Special matrices

a zero matrix is a matrix with all zero elements, denoted by 0

- the size of the zero matrix is determined from the context
- the zero matrix of size $m \times n$ is sometimes written as $0_{m \times n}$
a diagonal matrix is square matrix (size $n \times n$) whose elements are zero everywhere except on the main diagonal; for example

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 7
\end{array}\right] \triangleq \operatorname{diag}(2,1,5)
$$

the identity matrix of size n, denoted by \boldsymbol{I} is the diagonal matrix with unity for all its diagonal elements

- size determined from context or written as \boldsymbol{I}_{n}
- examples"

$$
\boldsymbol{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \boldsymbol{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

are the 2×2 and 3×3 identity matrices

Block (partitioned) matrices

Matrices can be represented in term of submatrices

Example: is 2×2 block matrix

$$
A=\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{C} \\
\boldsymbol{D} & \boldsymbol{E}
\end{array}\right]
$$

- entries $\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$, and \boldsymbol{E} are called blocks or submatrices
- the submatrices can be referred to by their block row and column indices; for example, \boldsymbol{C} is the $(1,2)$ block of \boldsymbol{A}
- block matrices must have compatible dimensions
- if

$$
\boldsymbol{B}=\left[\begin{array}{lll}
0 & 2 & 3
\end{array}\right], \quad \boldsymbol{C}=[-1], \quad \boldsymbol{D}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 5
\end{array}\right], \quad \boldsymbol{E}=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

then

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{C} \\
\boldsymbol{D} & \boldsymbol{E}
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 2 & 3 & -1 \\
2 & 2 & 1 & 4 \\
1 & 3 & 5 & 4
\end{array}\right]
$$

Columns and rows of a matrix

a matrix can be viewed as a block matrix with row/column vector blocks

- $m \times n$ matrix \boldsymbol{A} can be written as

$$
\boldsymbol{A}=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{n}
\end{array}\right]
$$

where \boldsymbol{a}_{j} denotes the j th column $\boldsymbol{a}_{j}=\left(a_{1 j}, \ldots, a_{m j}\right)$, for $j=1, \ldots, n$

- $m \times n$ matrix \boldsymbol{A} can be written as

$$
\boldsymbol{A}=\left[\begin{array}{c}
\overline{\boldsymbol{a}}_{1}^{\top} \\
\overline{\boldsymbol{a}}_{2}^{\top} \\
\vdots \\
\overline{\boldsymbol{a}}_{m}^{\top}
\end{array}\right],
$$

where $\overline{\boldsymbol{a}}_{i}^{\top}$ is the i th rows defined as $\overline{\boldsymbol{a}}_{i}^{\top}=\left[\begin{array}{lll}a_{i 1} & \cdots & a_{i n}\end{array}\right]$ for $i=1, \ldots, m$

Matrix addition

two matrices $\boldsymbol{A}, \boldsymbol{B}$ of the same size $(m \times n)$ can be added together element wise

$$
\boldsymbol{A}+\boldsymbol{B}=\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right]
$$

Properties.

- commutativity: $\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$
- associativity: $(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})$. We thus write both as $\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C}$
- transpose of sum: $(\boldsymbol{A}+\boldsymbol{B})^{\top}=\boldsymbol{A}^{\top}+\boldsymbol{B}^{\top}$

Scalar matrix multiplication

for matrix \boldsymbol{A} and scalar α, we have

$$
\alpha \boldsymbol{A}=\left[\begin{array}{cccc}
\alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1 n} \\
\alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha a_{m 1} & \alpha a_{m 2} & \cdots & \alpha a_{m n}
\end{array}\right]
$$

Example

$$
(-3)\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right]=\left[\begin{array}{rr}
0 & 3 \\
-3 & 6
\end{array}\right]
$$

Properties.

- $(\alpha \boldsymbol{A})^{\top}=\alpha \boldsymbol{A}^{\top}$ for any scalar α
- for scalars α and β, it holds that

$$
(\alpha+\beta) \boldsymbol{A}=\alpha \boldsymbol{A}+\beta \boldsymbol{A}, \quad(\alpha \beta) \boldsymbol{A}=\alpha(\beta \boldsymbol{A})
$$

Matrix-matrix multiplication

for $m \times n$ matrix A and $n \times p$ matrix B, then

$$
\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m 1} & c_{m 2} & \cdots & c_{m n}
\end{array}\right]
$$

is the $m \times p$ matrix with entries:

$$
c_{i j}=\sum_{\ell=1}^{n} a_{i \ell} b_{\ell j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

- size of A and B must be compatible (conformable):

$$
\text { \# columns in } \boldsymbol{A}=\text { \# rows in } \boldsymbol{B}
$$

- the order of matrix multiplication is not commutative in general
- $\boldsymbol{A B}$ is not always the same as $\boldsymbol{B} \boldsymbol{A}$
- if \boldsymbol{A} is an $m \times p$ matrix and \boldsymbol{B} is an $p \times n$ matrix, then $\boldsymbol{B} \boldsymbol{A}$ does not make sense if $m \neq n$

Examples

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
2 & 3 \\
4 & 5
\end{array}\right]=\left[\begin{array}{cc}
6 & 9 \\
12 & 18
\end{array}\right]
$$

- for an $m \times n$ matrix, we have

$$
\boldsymbol{A} \boldsymbol{I}_{n}=\boldsymbol{I}_{m} \boldsymbol{A}=\boldsymbol{A}
$$

Properties of matrix multiplication

(for scalar α and matrices $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C})

- associativity

$$
(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(\boldsymbol{B C})
$$

which we write it as $\boldsymbol{A B C}$.

- associativity with scalar multiplication

$$
\alpha(\boldsymbol{A B})=(\alpha \boldsymbol{A}) \boldsymbol{B}=\boldsymbol{A}(\alpha \boldsymbol{B})
$$

We thus write it as $\alpha \boldsymbol{A} \boldsymbol{B}$

- distributivity with addition

$$
\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \boldsymbol{B}+\boldsymbol{A} \boldsymbol{C} \text { and }(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{C}=\boldsymbol{A} \boldsymbol{C}+\boldsymbol{B} \boldsymbol{C}
$$

- transpose of product

$$
(\boldsymbol{A} \boldsymbol{B})^{\top}=\boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
$$

Matrix-vector multiplication

for $m \times n$ matrix \boldsymbol{A} and n-vector \boldsymbol{x}, we have

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right], \quad y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

- \boldsymbol{y} is an m-vector
- example:

$$
\left[\begin{array}{rrr}
0 & 1 & 2 \\
-1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
(0)(1)+(1)(2)+(2)(3) \\
(-1)(1)+(0)(2)+(-1)(3)
\end{array}\right]=\left[\begin{array}{r}
8 \\
-4
\end{array}\right]
$$

Properties.

1. distributive: $\boldsymbol{A}(\boldsymbol{u}+\mathrm{v})=\boldsymbol{A} \boldsymbol{u}+\boldsymbol{A} \boldsymbol{v}$ and $(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{u}=\boldsymbol{A} \boldsymbol{u}+\boldsymbol{B} \boldsymbol{u}$ where $\boldsymbol{u}, \boldsymbol{v}$ are vectors and $\boldsymbol{A}, \boldsymbol{B}$ are matrices
2. $(\alpha \boldsymbol{A}) \boldsymbol{u}=\alpha(\boldsymbol{A} \boldsymbol{u})=\boldsymbol{A}(\alpha \boldsymbol{u})$; as convention, we write it as $\alpha \boldsymbol{A} \boldsymbol{u}$

Matrix determinant

$i j$ th submatrix of \boldsymbol{A} : if \boldsymbol{A} is an $n \times n$ matrix, then the $i j$ th submatrix of \boldsymbol{A}, denoted by $\boldsymbol{A}_{i j}$, is the $(m-1) \times(m-1)$ obtained by deleting row i and column j of \boldsymbol{A}; for example,

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad \boldsymbol{A}_{12}=\left[\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right], \quad \boldsymbol{A}_{32}=\left[\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right]
$$

Determinant: the determinant of a matrix is computed a follows; pick any value of $i(i=1,2, \ldots, n)$ and compute

$$
|\boldsymbol{A}|=\sum_{j=1}^{n}(-1)^{i+j}\left|\boldsymbol{A}_{i j}\right| a_{i j},
$$

- the quantities $\left|\boldsymbol{A}_{i j}\right|$ and $(-1)^{i+j}\left|\boldsymbol{A}_{i j}\right|$ are called the minor and cofactor of element $a_{i j}$
- for $n \times n$ matrices $\boldsymbol{A}, \boldsymbol{B},|\boldsymbol{A} \boldsymbol{B}|=|\boldsymbol{A}||\boldsymbol{B}|$

Example

a) for a scalar matrix $\boldsymbol{A}=\left[a_{11}\right]$, we have $|\boldsymbol{A}|=a_{11}$
b) for a 2×2 matrix, the determinant is

$$
|\boldsymbol{A}|=\left|\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right|=a_{11} a_{22}-a_{21} a_{12}
$$

c) for the matrix $\boldsymbol{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

- we have for $i=1$

$$
\boldsymbol{A}_{11}=\left[\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right], \quad \boldsymbol{A}_{12}=\left[\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right], \quad \boldsymbol{A}_{13}=\left[\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right]
$$

- thus, the determinant is

$$
\begin{aligned}
|\boldsymbol{A}| & =(-1)^{2} a_{11}\left|\boldsymbol{A}_{11}\right|+(-1)^{3} a_{12}\left|\boldsymbol{A}_{12}\right|+(-1)^{4} a_{13}\left|\boldsymbol{A}_{13}\right| \\
& =a_{11}\left|\boldsymbol{A}_{11}\right|-a_{12}\left|\boldsymbol{A}_{12}\right|+a_{13}\left|\boldsymbol{A}_{13}\right| \\
& =1(-3)-2(-6)+3(-3)=0
\end{aligned}
$$

Properties of determinants

Multiplication of a single row/column by a constant: if a single row or column of a matrix, \boldsymbol{A}, is multiplied by a constant, k, forming the matrix, $\tilde{\boldsymbol{A}}$, then

$$
\operatorname{det} \tilde{\boldsymbol{A}}=k \operatorname{det} \boldsymbol{A}
$$

Multiplication of all elements by a constant

$$
\operatorname{det}(k \boldsymbol{A})=k^{n} \operatorname{det} \boldsymbol{A}
$$

Transpose

$$
\operatorname{det} \boldsymbol{A}^{T}=\operatorname{det} \boldsymbol{A}
$$

Determinant of the product of square matrices

$$
\begin{gathered}
\operatorname{det} \boldsymbol{A B}=\operatorname{det} \boldsymbol{A} \operatorname{det} \boldsymbol{B} \\
\operatorname{det} \boldsymbol{A} \boldsymbol{B}=\operatorname{det} \boldsymbol{B} \boldsymbol{A}
\end{gathered}
$$

Inverse

the matrix \boldsymbol{A}^{-1} is said to be the inverse of the $n \times n$ matrix \boldsymbol{A} if it satisfies

$$
\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=I_{n}
$$

- invertible matrices must be square
- if \boldsymbol{A} has an inverse \boldsymbol{A}^{-1}, then the inverse of \boldsymbol{A}^{-1} is \boldsymbol{A}
- for a non-zero scalar a, the inverse is the number x such that $a x=1$, which we denote by $x=1 / a=a^{-1}$
- if the inverse of A exists, then the matrix is said to be invertible or nonsingular
- a square matrix \boldsymbol{A} is invertible if and only if the determinant is nonzero $(|\boldsymbol{A}| \neq 0)$

Example

a) the identity matrix \boldsymbol{I} is invertible, with inverse $\boldsymbol{I}^{-1}=\boldsymbol{I}$ since

$$
(I) I=I
$$

b) any 2×2 matrix \boldsymbol{A} is invertible if and only if $a_{11} a_{22} \neq a_{12} a_{21}$, with inverse

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

c) a diagonal matrix

$$
\boldsymbol{D}=\left[\begin{array}{cccc}
d_{11} & 0 & \cdots & 0 \\
0 & d_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}
\end{array}\right]
$$

is invertible if and only if $d_{i i} \neq 0$ for $i=1, \ldots, n$, and

$$
\boldsymbol{D}^{-1}=\left[\begin{array}{cccc}
1 / d_{11} & 0 & \cdots & 0 \\
0 & 1 / d_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 / d_{n n}
\end{array}\right]
$$

Inverse properties

- Inverse of transpose: if A is invertible, its transpose A^{\top} is also invertible with inverse:

$$
\left(\boldsymbol{A}^{\top}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\top}
$$

- Inverse of matrix product: if both \boldsymbol{A} and \boldsymbol{B} are invertible square matrices of the same size, then $\boldsymbol{A} \boldsymbol{B}$ is invertible, and

$$
(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}
$$

- Negative matrix power: let \boldsymbol{A} be a square invertible matrix, then

$$
\left(A^{p}\right)^{-1}=\left(A^{-1}\right)^{p}
$$

for any integer p

Square linear equation

set or system of n linear equations with n variables x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

- scalars $a_{i j}$ are called coefficients and the numbers b_{i} are called right-hand-sides.
- using matrix notation:

$$
A x=b
$$

where the $n \times n$ matrix A is called the coefficient matrix and the m vector \boldsymbol{b} is called the right-hand side

Cramers's rule

if the determinant $|\boldsymbol{A}| \neq 0$, then the square linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a unique solution given by Cramer's formula

$$
x_{k}=\frac{\left|\boldsymbol{D}_{k}\right|}{|\boldsymbol{A}|}, \quad k=1,2, \ldots, n
$$

- \boldsymbol{D}_{k} is the matrix obtained replacing the k th column of \boldsymbol{A} by the right-hand side (column) b
- by definition, we know that

$$
\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}
$$

it follows from Cramer's formula (with some algebra) that

$$
\boldsymbol{A}^{-1}=\frac{1}{|\boldsymbol{A}|} \underbrace{\left[\begin{array}{cccc}
\left|\boldsymbol{A}_{11}\right| & \left|\boldsymbol{A}_{21}\right| & \cdots & \left|\boldsymbol{A}_{n 1}\right| \\
\left|\boldsymbol{A}_{12}\right| & \left|\boldsymbol{A}_{22}\right| & \cdots & \left|\boldsymbol{A}_{n 1}\right| \\
\vdots & \vdots & \ddots & \vdots \\
\left|\boldsymbol{A}_{1 n}\right| & \left|\boldsymbol{A}_{2 n}\right| & \cdots & \left|\boldsymbol{A}_{n n}\right|
\end{array}\right]}_{\operatorname{adj} \boldsymbol{A}}
$$

Rank of a matrix

the rank of a matrix, \boldsymbol{A}, equals the number of linearly independent rows or columns
rank can be found by finding the highest-order square submatrix that is nonsingular; for example,

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
1 & -5 & 2 \\
4 & 7 & -5 \\
-3 & 15 & -6
\end{array}\right]
$$

since the determinant is zero, the 3×3 matrix is singular; choosing the submatrix

$$
\boldsymbol{A}_{33}=\left[\begin{array}{rr}
1 & -5 \\
4 & 7
\end{array}\right]
$$

whose determinant equals 27 , we conclude that $\operatorname{rank} \boldsymbol{A}=2$

Eigenvalues and eigenvectors

for an $(n \times n)$ square matrix \mathbf{A}, any vector $\mathbf{x}(\mathbf{x} \neq 0)$ that satisfies the equation

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

is an eigenvector, and λ is the corresponding eigenvalue

- eigenvalues are solution of the characteristic equation

$$
Q(\lambda)=|\lambda \mathbf{I}-\mathbf{A}|=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0} \lambda^{0}=0
$$

- the polynomial $Q(\lambda)$ is called the characteristic polynomial of matrix \mathbf{A}

Cayley-Hamilton theorem: every $n \times n$ matrix A satisfies its own characteristic equation

$$
\mathbf{Q}(\mathbf{A})=\mathbf{A}^{n}+a_{n-1} \mathbf{A}^{n-1}+\cdots+a_{1} \mathbf{A}+a_{0} \mathbf{A}^{0}=0
$$

Outline

- complex numbers
- sinusoids and exponentials
- vectors and matrices
- matrix calculus
- partial fraction expansion

Derivative and integral of matrix

$$
\mathbf{A}(t)=\left[a_{i j}(t)\right]_{m \times n}
$$

the derivative and integral of a \boldsymbol{A} with respect to t are defined entrywise:

$$
\begin{aligned}
\frac{d}{d t}[\mathbf{A}(t)]= & {\left[\frac{d}{d t} a_{i j}(t)\right]_{m \times n} \text { or } \quad \dot{\mathbf{A}}(t)=\left[\dot{a}_{i j}(t)\right]_{m \times n} } \\
& \int \mathbf{A}(t) d t=\left[\int a_{i j}(t) d t\right]_{m \times n}
\end{aligned}
$$

Example:

$$
\mathbf{A}(t)=\left[\begin{array}{cc}
e^{-2 t} & \sin t \\
e^{t} & e^{-t}+e^{-2 t}
\end{array}\right]
$$

the derivative of $\boldsymbol{A}(t)$ is

$$
\dot{\mathbf{A}}(t)=\left[\begin{array}{cc}
-2 e^{-2 t} & \cos t \\
e^{t} & -e^{-t}-2 e^{-2 t}
\end{array}\right]
$$

the integral of $\boldsymbol{A}(t)$ is

$$
\int \mathbf{A}(t) d t=\left[\begin{array}{cc}
\int e^{-2 t} d t & \int \sin d t \\
\int e^{t} d t & \int\left(e^{-t}+2 e^{-2 t}\right) d t
\end{array}\right]
$$

Derivative properties

Linearity

- $\frac{d}{d t}(\mathbf{A}+\mathbf{B})=\frac{d \mathbf{A}}{d t}+\frac{d \mathbf{B}}{d t}$
- $\frac{d}{d t}(c \mathbf{A})=c \frac{d \mathbf{A}}{d t}$

Matrix product

- $\frac{d}{d t}(\mathbf{A B})=\frac{d \mathbf{A}}{d t} \mathbf{B}+\mathbf{A} \frac{d \mathbf{B}}{d t}=\dot{\mathbf{A}} \mathbf{B}+\mathbf{A} \dot{\mathbf{B}}$
- If we let $\mathbf{B}=\mathbf{A}^{-1}$, we obtain

$$
\frac{d}{d t}\left(\mathbf{A} \mathbf{A}^{-1}\right)=\frac{d \mathbf{A}}{d t} \mathbf{A}^{-1}+\mathbf{A} \frac{d}{d t} \mathbf{A}^{-1}=0
$$

hence

$$
\frac{d}{d t}\left(\mathbf{A}^{-1}\right)=-\mathbf{A}^{-1} \frac{d \mathbf{A}}{d t} \mathbf{A}^{-1}
$$

Functions of a matrix

consider the function:

$$
f(\lambda)=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda_{2}^{2}+\cdots=\sum_{i=0}^{\infty} \alpha_{i} \lambda^{i}
$$

if λ is an eigenvalue of \mathbf{A}, then from characteristic equation, we have

$$
\lambda^{n}=-a_{n-1} \lambda^{n-1}-a_{n-2} \lambda^{n-2}-\cdots-a_{1} \lambda-a_{0}
$$

hence λ^{n+k} can be expressed in terms of $\lambda^{n-1}, \lambda^{n-2}, \ldots, \lambda$ for any k; therefore,

$$
f(\lambda)=\beta_{0}+\beta_{1} \lambda+\beta_{2} \lambda^{2}+\cdots+\beta_{n-1} \lambda^{n-1}
$$

for some β_{i} and

$$
\left[\begin{array}{c}
f\left(\lambda_{1}\right) \\
f\left(\lambda_{2}\right) \\
\vdots \\
f\left(\lambda_{n}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{n-1}
\end{array}\right]
$$

if we assume that the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct, then:

$$
\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]^{-1}\left[\begin{array}{c}
f\left(\lambda_{1}\right) \\
f\left(\lambda_{2}\right) \\
\vdots \\
f\left(\lambda_{n}\right)
\end{array}\right]
$$

now if $f(\mathbf{A})$ is a function of a square matrix \mathbf{A} :

$$
f(\mathbf{A})=\alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{A}+\alpha_{2} \mathbf{A}^{2}+\cdots=\sum_{i=0}^{\infty} \alpha_{i} \mathbf{A}^{i}
$$

then using Cayley-Hamilton theorem, we can show that

$$
f(\mathbf{A})=\beta_{0} \mathbf{I}+\beta_{1} \mathbf{A}+\beta_{2} \mathbf{A}^{2}+\cdots+\beta_{n-1} \mathbf{A}^{n-1}=\sum_{i=0}^{n-1} \beta_{i} \mathbf{A}^{i}
$$

where the coefficients β_{i} are found as before (if some of the eigenvalues are repeated (multiple roots), the results should be modified)

Exponential of a matrix

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\cdots+\frac{\mathbf{A}^{n} t^{n}}{n!}+\cdots=\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k} t^{k}}{k!}
$$

we have

$$
e^{\mathbf{A} t}=\sum_{i=1}^{n-1} \beta_{i} \mathbf{A}^{i}
$$

where

$$
\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]^{-1}\left[\begin{array}{c}
e^{\lambda_{1} t} \\
e^{\lambda_{2} t} \\
\vdots \\
e^{\lambda_{n} t}
\end{array}\right]
$$

Example 1

compute $e^{\mathbf{A} t}$ for the case $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$
Solution: the characteristic equation is

$$
|\lambda \mathbf{I}-\mathbf{A}|=\left|\begin{array}{cc}
\lambda & -1 \\
2 & \lambda+3
\end{array}\right|=\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)=0
$$

hence, the eigenvalues are $\lambda_{1}=-1, \lambda_{2}=-2$, and

$$
\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
1 & -2
\end{array}\right]^{-1}\left[\begin{array}{c}
e^{-t} \\
e^{-2 t}
\end{array}\right]=\left[\begin{array}{ll}
2 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
e^{-t} \\
e^{-2 t}
\end{array}\right]=\left[\begin{array}{c}
2 e^{-t}-e^{-2 t} \\
e^{-t}-e^{-2 t}
\end{array}\right]
$$

therefore,

$$
\begin{aligned}
e^{\mathbf{A} t}=\beta_{0} \mathbf{I}+\beta_{1} \mathbf{A} & =\left(2 e^{-t}-e^{-2 t}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left(e^{-t}-e^{-2 t}\right)\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 e^{-t}-e^{-2 t} & e^{-t}-e^{-2 t} \\
-2 e^{-t}+2 e^{-2 t} & -e^{-t}+2 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

Matrix power

we can express \mathbf{A}^{k} as

$$
\mathbf{A}^{k}=\beta_{0} \mathbf{I}+\beta_{1} \mathbf{A}+\cdots+\beta_{n-1} \mathbf{A}^{n-1}
$$

where

$$
\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]^{-1}\left[\begin{array}{c}
\lambda_{1}^{k} \\
\lambda_{2}^{k} \\
\vdots \\
\lambda_{n}^{k}
\end{array}\right]
$$

Outline

- complex numbers
- sinusoids and exponentials
- vectors and matrices
- matrix calculus
- partial fraction expansion

Rational functions

a rational function $F(s)$ can be expressed as

$$
F(s)=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{0}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}=\frac{N(s)}{D(s)}
$$

- a and b are real constants, and m and n are positive integers
- the function $F(s)$ is proper if $m<n$ and improper if $m \geq n$
- only a proper rational function can be expanded as a sum of partial fractions
- for an improper function $F(s)$, we can always separate it into a sum of a polynomial in s and a proper function

Improper functions

Example: consider the improper function

$$
F(s)=\frac{2 s^{3}+9 s^{2}+11 s+2}{s^{2}+4 s+3}
$$

we can divide the numerator by the denominator:

$$
\left.s^{2}+4 s+3\right) \begin{array}{r}
2 s+1 \\
\begin{array}{r}
2 s^{3}+9 s^{2}+11 s+2 \\
-2 s^{3}-8 s^{2}-6 s \\
s^{2}+5 s+2 \\
-s^{2}-4 s-3 \\
\hline-1
\end{array}
\end{array}
$$

therefore, $F(s)$ can be expressed as

$$
F(s)=\frac{2 s^{3}+9 s^{2}+11 s+2}{s^{2}+4 s+3}=\underbrace{2 s+1}_{\text {polynomial in } s}+\underbrace{\frac{s-1}{s^{2}+4 s+3}}
$$

Partial fraction expansion

we can factor the denominator of $F(s)$ and express it as

$$
F(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \ldots\left(s-\lambda_{n}\right)}
$$

- $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of the characteristic equations $D(s)=0$
- for each multiple root of $D(s)$ of multiplicity r, the expansion contains r terms

Example:

$$
\frac{s+6}{s(s+3)(s+1)^{2}},
$$

the denominator has four roots; two distinct at $s=0$ and $s=-3$ and multiple root of multiplicity 2 occurs at $s=-1$; thus the partial fraction expansion of this function takes the form

$$
\frac{s+6}{s(s+3)(s+1)^{2}}=\frac{K_{1}}{s}+\frac{K_{2}}{s+3}+\frac{K_{3}}{(s+1)^{2}}+\frac{K_{4}}{s+1} .
$$

Example: method of clearing fractions

obtain a partial fraction expansion of

$$
F(s)=\frac{s^{3}+3 s^{2}+4 s+6}{(s+1)(s+2)(s+3)^{2}}
$$

Solution: $F(s)$ can be expressed as a sum of partial fractions:

$$
F(s)=\frac{s^{3}+3 s^{2}+4 s+6}{(s+1)(s+2)(s+3)^{2}}=\frac{K_{1}}{s+1}+\frac{K_{2}}{s+2}+\frac{K_{3}}{s+3}+\frac{K_{4}}{(s+3)^{2}}
$$

to find the constants K_{i}, we clear fractions by multiplying both sides by $(s+1)(s+2)(s+3)^{2}$:

$$
\begin{aligned}
s^{3}+3 s^{2}+4 s+6 & =K_{1}\left(s^{3}+8 s^{2}+21 s+18\right)+K_{2}\left(s^{3}+7 s^{2}+15 s+9\right) \\
& +K_{3}\left(s^{3}+6 s^{2}+11 s+6\right)+K_{4}\left(s^{2}+3 s+2\right) \\
& =s^{3}\left(K_{1}+K_{2}+K_{3}\right)+s^{2}\left(8 K_{1}+7 K_{2}+6 K_{3}+K_{4}\right) \\
& +x\left(21 K_{1}+15 K_{2}+11 K_{3}+3 K_{4}\right)+\left(18 K_{1}+9 K_{2}+6 K_{3}+2 K_{4}\right)
\end{aligned}
$$

equating coefficients of similar powers on both sides yields

$$
\begin{aligned}
K_{1}+K_{2}+K_{3} & =1 \\
8 K_{1}+7 K_{2}+6 K_{3}+K_{4} & =3 \\
21 K_{1}+15 K_{2}+11 K_{3}+3 K_{4} & =4 \\
18 K_{1}+9 K_{2}+6 K_{3}+2 K_{4} & =6
\end{aligned}
$$

solving these four equations gives

$$
K_{1}=1, \quad K_{2}=-2, \quad K_{3}=2, \quad K_{4}=-3
$$

hence,

$$
F(s)=\frac{1}{s+1}-\frac{2}{s+2}+\frac{2}{s+3}-\frac{3}{(s+3)^{2}}
$$

- this method is straightforward but cumbersome
- we next develop easier methods

The Method of residues: distinct factors

Distinct factors: suppose $F(s)=N(s) / D(s)(m<n)$

$$
\begin{aligned}
F(s)=\frac{N(s)}{D(s)} & =\frac{N(s)}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \cdots\left(s-\lambda_{n}\right)} \\
& =\frac{K_{1}}{s-\lambda_{1}}+\frac{K_{2}}{s-\lambda_{2}}+\cdots+\frac{K_{n}}{s-\lambda_{n}}
\end{aligned}
$$

where λ_{i} distinct

Method of residues: we can determine the coefficient K_{j} by:

$$
K_{j}=\left.\left(s-\lambda_{j}\right) F(s)\right|_{s=\lambda_{j}} \quad j=1,2, \ldots, n
$$

this procedure is also called the Heaviside "cover-up" method

Example: distinct real factors

$$
\begin{aligned}
F(s) & =\frac{2 s^{2}+9 s-11}{(s+1)(s-2)(s+3)} \\
& =\frac{K_{1}}{s+1}+\frac{K_{2}}{s-2}+\frac{K_{3}}{s+3}
\end{aligned}
$$

to find K_{1} corresponding to the factor $(s+1)$, we cancel (cover-up) the term $(s+1)$ in the denominator of $F(s)$ and then substitute $s=-1$:

$$
K_{1}=\left.\frac{2 s^{2}+9 s-11}{(s+1)(s-2)(s+3)}\right|_{s=-1}=\frac{2-9-11}{(-1-2)(-1+3)}=\frac{-18}{-6}=3
$$

similarly, to compute K_{2}, we cover up the factor $(s-2)$ in $F(s)$ and let $s=2$ in the remaining function, as follows:

$$
K_{2}=\left.\frac{2 s^{2}+9 s-11}{(s+1)(s-2)(s+3)}\right|_{s=2}=\frac{8+18-11}{(2+1)(2+3)}=\frac{15}{15}=1
$$

and

$$
K_{3}=\left.\frac{2 s^{2}+9 s-11}{(s+1)(s-2)(s+3)}\right|_{s=-3}=\frac{18-27-11}{(-3+1)(-3-2)}=\frac{-20}{10}=-2
$$

therefore,

$$
F(s)=\frac{2 s^{2}+9 s-11}{(s+1)(s-2)(s+3)}=\frac{3}{s+1}+\frac{1}{s-2}-\frac{2}{s+3}
$$

Example: distinct complex factors

complex factors conjugate can be treated the same as distinct factors

$$
F(s)=\frac{4 s^{2}+2 s+18}{(s+1)(s+2-j 3)(s+2+j 3)}=\frac{K_{1}}{s+1}+\frac{K_{2}}{s+2-j 3}+\frac{K_{3}}{s+2+j 3}
$$

we have

$$
\begin{aligned}
& K_{1}=\left.\frac{4 s^{2}+2 s+18}{(s+1)\left(s^{2}+4 s+13\right)}\right|_{s=-1}=2 \\
& K_{2}=\left.\frac{4 s^{2}+2 s+18}{(s+1)(s+2-j 3)(s+2+j 3)}\right|_{s=-2+j 3}=1+j 2=\sqrt{5} e^{j 63.43^{\circ}} \\
& K_{3}=\left.\frac{4 s^{2}+2 s+18}{(s+1)(s+2-j 3)(s+2+j 3)}\right|_{s=-2-j 3}=1-j 2=\sqrt{5} e^{-j 63.43^{\circ}}
\end{aligned}
$$

therefore

$$
F(s)=\frac{2}{s+1}+\frac{\sqrt{5} e^{j 63.43^{\circ}}}{s+2-j 3}+\frac{\sqrt{5} e^{-j 63.43^{\circ}}}{s+2+j 3}
$$

- if the coefficients of a rational function are real, then coefficients corresponding to the complex-conjugate factors are conjugates of each other
- in such a case, we need to compute only one of the coefficients

Quadratic factors

it is more convenient to combine the two terms arising from complex-conjugate factors into one quadratic factor

Example: $F(s)$ the previous example can be expressed as

$$
F(s)=\frac{4 s^{2}+2 s+18}{(s+1)\left(s^{2}+4 s+13\right)}=\frac{2}{s+1}+\frac{A s+B}{s^{2}+4 s+13}
$$

the values of A and B can be determined by clearing fractions:

$$
\begin{aligned}
4 s^{2}+2 s+18 & =2\left(s^{2}+4 s+13\right)+(A s+B)(s+1) \\
& =(2+A) s^{2}+(8+A+B) s+(26+B)
\end{aligned}
$$

equating terms of similar powers yields $A=2, B=-8$; hence

$$
F(s)=\frac{4 s^{2}+2 s+18}{(s+1)\left(s^{2}+4 s+13\right)}=\frac{2}{s+1}+\frac{2 s-8}{s^{2}+4 s+13}
$$

Finding quadratic constant using substitution approach: we can also find the quadratic constants A and B by substituting convenient values of s in both sides

Example:

$$
F(s)=\frac{4 s^{2}+2 s+18}{(s+1)\left(s^{2}+4 s+13\right)}=\frac{2}{s+1}+\frac{A s+B}{s^{2}+4 s+13}
$$

plugging in $s=0$ on both sides gives

$$
\frac{18}{13}=2+\frac{B}{13} \quad \Rightarrow \quad B=-8
$$

to find A, we can multiply both sides of

$$
\frac{4 s^{2}+2 s+18}{(s+1)\left(s^{2}+4 s+13\right)}=\frac{2}{s+1}+\frac{A s+B}{s^{2}+4 s+13}
$$

by s and then let $s \rightarrow \infty$ (when $s \rightarrow \infty$, only the terms of the highest power are significant); therefore,

$$
4=2+A \quad \Rightarrow \quad A=2
$$

Example: depending on the function, we can use other convenient values for s :

$$
F(s)=\frac{2 s^{2}+4 s+5}{x\left(s^{2}+2 s+5\right)}=\frac{1}{s}+\frac{A s+B}{s^{2}+2 s+5}
$$

if we plug in $s=0$, we obtain ∞ on both sides! it is more convenient to use $s=1$:

$$
\frac{11}{8}=1+\frac{A+B}{8} \quad \text { or } \quad A+B=3
$$

we can now choose some other value for s (e.g., $s=2$) to obtain one more equation to solve for A and B; in this case, a simple method is to multiply both sides by s and then let $s \rightarrow \infty$ to get

$$
2=1+A \quad \Rightarrow \quad A=1
$$

hence, $B=3-c_{1}=2$ and

$$
F(s)=\frac{1}{s}+\frac{s+2}{s^{2}+2 s+5}
$$

Repeated factors

if the root $\lambda_{n}=\hat{\lambda}$ of $D(s)=0$, is repeated r times, then

$$
\begin{aligned}
F(s)= & \frac{N(s)}{(s-\hat{\lambda})^{r}\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \cdots\left(s-\lambda_{n-r}\right)} \\
= & \frac{\hat{K}_{1}}{(s-\hat{\lambda})}+\frac{\hat{K}_{2}}{(s-\hat{\lambda})^{2}}+\cdots+\frac{\hat{K}_{r}}{(s-\hat{\lambda})^{r}} \\
& +\frac{K_{1}}{s-\lambda_{1}}+\frac{K_{2}}{s-\lambda_{2}}+\cdots+\frac{K_{n-r}}{s-\lambda_{n-r}}
\end{aligned}
$$

- coefficients $K_{1}, K_{2}, \ldots, K_{n-r}$ corresponding to the unrepeated factors can be found using any of the previous methods
- coefficients $\hat{K}_{1}, K_{2}, \ldots, \hat{K}_{r}$ can be obtained by

$$
\hat{K}_{\ell}=\left.\frac{1}{(r-\ell)!} \frac{d^{r-\ell}}{d s^{r-\ell}}\left[(s-\lambda)^{r} F(s)\right]\right|_{s=\hat{\lambda}}, \quad \ell=1, \ldots, r
$$

to illustrate, assume $n=r=4$, then

$$
F(s)=\frac{\hat{K}_{1}}{(s-\hat{\lambda})}+\frac{\hat{K}_{2}}{(s-\hat{\lambda})^{2}}+\frac{\hat{K}_{3}}{(s-\hat{\lambda})^{3}}+\frac{\hat{K}_{4}}{(s-\hat{\lambda})^{4}}
$$

and

$$
\begin{aligned}
& \hat{K}_{4}=\left.\left[(s-\lambda)^{r} F(s)\right]\right|_{s=\hat{\lambda}} \\
& \hat{K}_{3}=\left.\frac{d}{d s}\left[(s-\lambda)^{r} F(s)\right]\right|_{s=\hat{\lambda}} \\
& \hat{K}_{2}=\left.\frac{1}{2!} \frac{d^{2}}{d s^{2}}\left[(s-\lambda)^{r} F(s)\right]\right|_{s=\hat{\lambda}} \\
& \hat{K}_{1}=\left.\frac{1}{3!} \frac{d^{3}}{d s^{3}}\left[(s-\lambda)^{r} F(s)\right]\right|_{s=\hat{\lambda}}
\end{aligned}
$$

Example

$$
\begin{aligned}
F(s) & =\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)} \\
& =\frac{\hat{K}_{1}}{s+1}+\frac{\hat{K}_{2}}{(s+1)^{2}}+\frac{\hat{K}_{3}}{(s+1)^{3}}+\frac{k}{s+2}
\end{aligned}
$$

the coefficient k corresponds to unrepeated facor $\lambda=-2$, so

$$
k=\left.\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)}\right|_{s=-2}=1
$$

to find \hat{K}_{3}, we conceal the factor $(s+1)^{3}$ in $F(s)$ and let $s=-1$:

$$
\hat{K}_{3}=\left.\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)}\right|_{s=-1}=2
$$

to find \hat{K}_{2}, we conceal the factor $(s+1)^{3}$ in $F(s)$, take the derivative of the remaining expression, and then let $s=-1$:

$$
\hat{K}_{2}=\left.\frac{d}{d s}\left[\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)}\right]\right|_{s=-1}=1
$$

similarly,

$$
\hat{K}_{1}=\left.\frac{1}{2!} \frac{d^{2}}{d s^{2}}\left[\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)}\right]\right|_{s=-1}=3
$$

therefore,

$$
F(s)=\frac{3}{s+1}+\frac{1}{(s+1)^{2}}+\frac{2}{(s+1)^{3}}+\frac{1}{s+2}
$$

Combination of residue method and shortcuts

consider the previous example where

$$
\begin{aligned}
F(s) & =\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)} \\
& =\frac{\hat{K}_{1}}{s+1}+\frac{\hat{K}_{2}}{(s+1)^{2}}+\frac{2}{(s+1)^{3}}+\frac{1}{s+2}
\end{aligned}
$$

to avoid taking derivatives, we can multiply both sides of this equation by s and then let $s \rightarrow \infty$, we can eliminate \hat{K}_{2} :

$$
4=\hat{K}_{1}+1 \quad \Longrightarrow \quad \hat{K}_{1}=3
$$

thus,

$$
\frac{4 s^{3}+16 s^{2}+23 s+13}{(s+1)^{3}(s+2)}=\frac{3}{s+1}+\frac{\hat{K}_{2}}{(s+1)^{2}}+\frac{2}{(s+1)^{3}}+\frac{1}{s+2}
$$

plugging $s=0$, we have

$$
\frac{13}{2}=2+\hat{K}_{2}+3+\frac{1}{2} \Rightarrow \hat{K}_{2}=1
$$

Improper $F(s)$ with $m=n$

when the numerator and denominator polynomials of $F(s)$ have the same degree $(m=n)$:

$$
\begin{aligned}
F(s) & =\frac{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}} \\
& =a_{n}+\frac{K_{1}}{s-\lambda_{1}}+\frac{K_{2}}{s-\lambda_{2}}+\cdots+\frac{K_{n}}{s-\lambda_{n}}
\end{aligned}
$$

- the coefficients $K_{1}, K_{2}, \ldots, K_{n}$ are computed as if $F(s)$ were proper
- the only difference between the proper and improper case is the appearance of an extra constant a_{n} in the latter

Example: expand $F(s)$ into partial fractions if

$$
F(s)=\frac{3 s^{2}+9 s-20}{s^{2}+s-6}=\frac{3 s^{2}+9 s-20}{(s-2)(s+3)}
$$

here, $m=n=2$ with $a_{n}=a_{2}=3$; thus,

$$
F(s)=\frac{3 s^{2}+9 s-20}{(s-2)(s+3)}=3+\frac{K_{1}}{s-2}+\frac{K_{2}}{s+3}
$$

in which

$$
K_{1}=\left.\frac{3 s^{2}+9 s-20}{(s-2)(s+3)}\right|_{s=2}=\frac{12+18-20}{(2+3)}=\frac{10}{5}=2
$$

and

$$
K_{2}=\left.\frac{3 s^{2}+9 s-20}{(s-2)(s+3)}\right|_{s=-3}=\frac{27-27-20}{(-3-2)}=\frac{-20}{-5}=4
$$

hence,

$$
F(s)=\frac{3 s^{2}+9 s-20}{(s-2)(s+3)}=3+\frac{2}{s-2}+\frac{4}{s+3}
$$

General improper rational functions

for an improper function $F(s)$, we can always separate it into a sum of a polynomial in s and a proper function:

$$
F(s)=\sum_{\ell=0}^{m-n} \alpha_{\ell} s^{\ell}+\frac{N_{1}(s)}{D(s)}
$$

Example:

$$
F(s)=\frac{s^{4}+13 s^{3}+66 s^{2}+200 s+300}{s^{2}+9 s+20}
$$

dividing the denominator into the numerator until the remainder is a proper rational function gives

$$
F(s)=s^{2}+4 s+10+\frac{30 s+100}{s^{2}+9 s+20}
$$

where the term $(30 s+100) /\left(s^{2}+9 s+20\right)$ is the remainder
we expand the proper rational function into a sum of partial fractions:

$$
\frac{30 s+100}{s^{2}+9 s+20}=\frac{30 s+100}{(s+4)(s+5)}=\frac{-20}{s+4}+\frac{50}{s+5}
$$

hence

$$
F(s)=s^{2}+4 s+10-\frac{20}{s+4}+\frac{50}{s+5}
$$

MATLAB

the partial fraction expansion of rational function $F(s)=B(s) / A(s)$ can be computed using the residue command in MATALB:
[R,P, K] = residue(B, A)

- two input vectors B and A specify the polynomial coefficients of the numerator and denominator, respectively; these vectors are ordered in descending powers of the independent variable
- output vector R contains the coefficients of each partial fraction, and vector P contains the corresponding roots of each partial fraction. For a root repeated r times, the r partial fractions are ordered in ascending powers
- when the rational function is not proper, the vector K contains the direct terms, which are ordered in descending powers of the independent variable

Example: let us use MATLAB to find the partial fraction expansion of

$$
F(s)=\frac{s^{5}+\pi}{s^{4}-\sqrt{8} s^{3}+\sqrt{32} s-4}
$$

MATLAB code:
>> $[R, P, K]=$ residue([1 0000 pi],[1 -sqrt(8) $0 \operatorname{sqrt}(32)-4])$;
>> R.', P.', K
$\mathrm{R}=7.88885 .97133 .11070 .1112$
$\mathrm{P}=1.41421 .41421 .4142-1.4142$
$K=1.00002 .8284$
hence

$$
F(s)=s+2.8284+\frac{7.8888}{s-\sqrt{2}}+\frac{5.9713}{(s-\sqrt{2})^{2}}+\frac{3.1107}{(s-\sqrt{2})^{3}}+\frac{0.1112}{s+\sqrt{2}}
$$

