8. Analysis using Laplace transform

- [the transfer function](#page-1-0)
- [stability](#page-16-0)
- [frequency response](#page-22-0)
- [LTI systems realization](#page-37-0)
- [introduction to feedback system design*](#page-54-0)

Transfer function

the *transfer function* of LTIC system is the Laplace transform of its impulse response:

$$
H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau
$$

- $h(t)$ is the impulse response (output due to impulse input $\delta(t)$)
- the response of an LTIC system to an exponential $x(t) = e^{st}$ is

$$
y(t) = h(t) * e^{st} = \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau = H(s) e^{st}
$$

- **•** for LTI system with input $x(t) = e^{st}$, output is of the same form $y(t) = H(s)e^{st}$ – such input is called *eigenfunction*
- **a** an alternate definition of the transfer function $H(s)$ of an LTI system, is

$$
H(s) = \frac{\text{output signal}}{\text{input signal}} \bigg|_{\text{input} = e^{st}}
$$

Zero-state response

taking Laplace transform of $y(t) = x(t) * h(t)$, we have

$$
Y(s) = X(s)H(s)
$$

- \blacksquare $H(s)$ is called transfer function because it describes in the s domain how the system "transfers" the excitation to the response
- if we know $H(s)$ and $X(s)$, then

 $y(t) = \mathcal{L}^{-1}[X(s)H(s)]$

Transfer function of LTI differential system

 $Q(D)y(t) = P(D)x(t)$

$$
(DN + a1DN-1 + \dots + aN-1D + aN)y(t)
$$

= (b₀D^N + b₁D^{N-1} + \dots + b_{N-1}D + b_N)x(t)

■ the transfer function for this system is

$$
H(s) = \frac{P(s)}{Q(s)}
$$

■ for an LTI differential system, the transfer function is simple to obtain

or

Example 8.1

consider an LTIC system described by the equation

$$
\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + x(t)
$$

find the transfer function and the zero-state response if the input $x(t) = 3e^{-5t}u(t)$

Solution: the system equation is

$$
\underbrace{(D^2 + 5D + 6)}_{Q(D)} y(t) = \underbrace{(D + 1) x(t)}_{P(D)}
$$

therefore,

$$
H(s) = \frac{P(s)}{Q(s)} = \frac{s+1}{s^2 + 5s + 6}
$$

since

$$
X(s) = \mathcal{L}\left[3e^{-5t}u(t)\right] = \frac{3}{s+5}
$$

we have

$$
Y(s) = X(s)H(s) = \frac{3(s+1)}{(s+5)(s^2+5s+6)} = \frac{-2}{s+5} - \frac{1}{s+2} + \frac{3}{s+3}
$$

the inverse Laplace transform of this equation is

$$
y(t) = \left(-2e^{-5t} - e^{-2t} + 3e^{-3t}\right)u(t)
$$

Example 8.2

show that the transfer function of:

- (a) an ideal delay of T seconds is e^{-sT}
- (b) an ideal differentiator is s
- (c) an ideal integrator is $1/s$

Solution:

(a) for an ideal delay of T seconds, the input $x(t)$ and output $y(t)$ are related by

$$
y(t) = x(t - T)
$$
 and $Y(s) = X(s)e^{-sT}$

therefore,

$$
H(s) = \frac{Y(s)}{X(s)} = e^{-sT}
$$

(b) for an ideal differentiator, the input $x(t)$ and the output $y(t)$ are related by

$$
y(t) = \frac{dx(t)}{dt}
$$

the Laplace transform of this equation is

$$
Y(s) = sX(s) \quad [x(0^-) = 0 \text{ for a causal signal}]
$$

hence

$$
H(s) = \frac{Y(s)}{X(s)} = s
$$

(c) for an ideal integrator with zero initial state, $y(0^-) = 0$,

$$
y(t) = \int_0^t x(\tau)d\tau \quad \text{and} \quad Y(s) = \frac{1}{s}X(s)
$$

therefore,

$$
H(s) = \frac{1}{s}
$$

Example 8.3

find the transfer function relating $V_C(s)$ to input voltage $V(s)$

Solution: the Laplace circuit is

the voltage across the capacitor is some proportion of the input voltage, namely the impedance of the capacitor divided by the sum of the impedances; thus,

$$
V_C(s) = \frac{1/Cs}{(Ls + R + \frac{1}{Cs})}V(s)
$$

solving for the transfer function, $V_C(s)/V(s)$, yields

$$
\frac{V_C(s)}{V(s)} = \frac{1/LC}{s^2 + \frac{R}{L}s + \frac{1}{LC}}
$$

Example 8.4

find the transfer function, $V_C(s)/V(s)$, for the circuit using nodal analysis

recall that the admittance, $Y(s)$ is the reciprocal of impedance:

$$
Y(s) = \frac{1}{Z(s)} = \frac{I(s)}{V(s)}
$$

when writing nodal equations, it can be more convenient to use admittance

Solution: the sum of currents flowing from the nodes marked $V_L(s)$ and $V_C(s)$ are

$$
\frac{V_L(s) - V(s)}{R_1} + \frac{V_L(s)}{Ls} + \frac{V_L(s) - V_C(s)}{R_2} = 0
$$

$$
CsV_C(s) + \frac{V_C(s) - V_L(s)}{R_2} = 0
$$

rearranging and using conductances, $G_1 = 1/R_1$ and $G_2 = 1/R_2$, we obtain,

$$
\left(G_1 + G_2 + \frac{1}{Ls}\right) V_L(s) - G_2 V_C(s) = V(s) G_1
$$

-G₂V_L(s) + (G₂ + Cs) V_C(s) = 0

solving for the transfer function, $V_C(s)/V(s)$, yields

$$
\frac{V_C(s)}{V(s)} = \frac{\frac{G_1 G_2}{C} s}{(G_1 + G_2) s^2 + \frac{G_1 G_2 L + C}{L C} s + \frac{G_2}{L C}}
$$

Block diagrams

we can represent an LTI system using its transfer function using block diagrams

$$
X(s) \longrightarrow H(s) \longrightarrow Y(s)
$$

- $Y(s) = X(s)H(s)$
- large systems are conveniently represented by block diagrams

Cascade and parallel connections

Cascade interconnection

$$
\frac{Y(s)}{X(s)} = \frac{W(s)}{X(s)} \frac{Y(s)}{W(s)} = H_1(s)H_2(s)
$$

Parallel interconnection

Feedback interconnection

$$
\frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}
$$

Inverse systems

if $H(s)$ is the t.f. of a system $\mathcal S,$ then the t.f. of its inverse system $\mathcal S_i$ is

$$
H_i(s) = \frac{1}{H(s)}
$$

- **■** this follows from the fact that $h(t) * h_i(t) = \delta(t)$, implying $H(s)H_i(s) = 1$
- for example, an ideal integrator and its inverse, an ideal differentiator, have transfer functions $1/s$ and s, respectively, leading to $H(s)H_i(s) = 1$

Outline

- • [the transfer function](#page-1-0)
- **[stability](#page-16-0)**
- [frequency response](#page-22-0)
- [LTI systems realization](#page-37-0)
- [introduction to feedback system design*](#page-54-0)

BIBO Stability

given transfer function $H(s) = P(s)/O(s)$, then the LTI system is

- **BIBO-stable if the poles of** $H(s)$ **are in LHP (excluding** $i\omega$ **-axis)**
- **BIBO-unstable if at least one pole of** $H(s)$ **is** *not* **in LHP**

Improper system: if $M > N$, then the system is BIBO-unstable

- this is because, using long division, we obtain $H(s) = R(s) + H_p(s)$, where $R(s)$ is an $(M - N)$ th-order polynomial and $H_p(s)$ is a proper transfer function
- for example,

$$
H(s) = \frac{s^3 + 4s^2 + 4s + 5}{s^2 + 3s + 2} = s + \frac{s^2 + 2s + 5}{s^2 + 3s + 2}
$$

the term \bar{s} is the transfer function of an ideal differentiator

■ applying unit-step function, the output will contain an impulse (unbounded output)

Asymptotic (internal) stability

if
$$
H(s) = \frac{P(s)}{Q(s)}
$$
 and $P(s)$, $Q(s)$ have **no common factors**, then the LTI system is

- 1. *asymptotically stable* if and only if all the poles of $H(s)$ are in the LHP
- 2. *marginally stable* if and only if there are no poles of $H(s)$ in the RHP and some unrepeated poles on the imaginary axis
- 3. *unstable* if and only if either one or both of the following conditions exist:
	- (i) at least one pole of $H(s)$ is in the RHP;
	- (ii) there are repeated poles of $H(s)$ on the imaginary axis

Example 8.5

determine the BIBO and asymptotic stability of the composite (cascade) system

Solution: the transfer function of the cascade system is

$$
H(s) = H_1(s)H_2(s) = \left(\frac{1}{s-1}\right)\left(\frac{s-1}{s+1}\right) = \frac{1}{s+1}
$$

thus, the system is BIBO-stable since all poles are in LHP

to determine the asymptotic stability,

- note that \mathcal{S}_1 has one characteristic root at 1 , and \mathcal{S}_2 also has one root at -1
- **hence, the composite system has a RHP root at** $+1$ **, and is asymptotically unstable**

Example 8.6

consider a feedback system on page [8.15](#page-0-0) with

$$
G(s) = K/s(s+8) \quad \text{and} \quad H(s) = 1
$$

determine the transfer function and BIBO stability of the system when: (a) $K = 7$; (b) $K = 16$; (c) $K = 80$

Solution: we have

$$
H_{\text{feedback}}(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{K/(s(s+8))}{1 + K/(s(s+8))} = \frac{K}{s^2 + 8s + K}
$$

hence

(a) $H_{\text{feedback}}(s) = \frac{7}{s^2 + 8s + 7}$, the poles are $s = -1, -7$ on LHP, hence stable (b) $H_{\text{feedback}}(s) = \frac{7}{s^2 + 8s + 16}$, the poles are $s = -4, -4$ on LHP, hence stable (c) $H_{\text{feedback}}(s) = \frac{7}{s^2 + 8s + 80}$, the poles are $s = -4 \pm 8j$ on LHP, hence stable

Matlab feedback function

we can use MATLAB feedback function to determine the transfer function in the previous example

```
(a) >> H = tf(1,1); K = 7; G = tf([0 0 K],[1 8 0]);
   TFa = feedback(G,H)Ha =7
   -------------
   s^2 + 8 s + 7(b) >> H = \text{tf}(1,1); K = 16; G = \text{tf}([0 \ 0 \ K], [1 \ 8 \ 0]);
   TFb = feedback(G,H)Hb =16
    --------------
   s^2 + 8 s + 16(c) >> H = \text{tf}(1,1); K = 80; G = \text{tf}([0 \ 0 \ K], [1 \ 8 \ 0]);
   TFc = feedback(G,H)H_C =80
   --------------
   s^2 + 8 s + 80
```
Outline

- • [the transfer function](#page-1-0)
- [stability](#page-16-0)
- **[frequency response](#page-22-0)**
- [LTI systems realization](#page-37-0)
- [introduction to feedback system design*](#page-54-0)

Frequency response

Frequency response: the response of an LTI system $h(t)$ to complex sinusoid

$$
x(t) = A_x e^{j\omega t} = |A_x| e^{j(\omega t + \angle A_x)}
$$

is

$$
y(t) = \int_{-\infty}^{\infty} h(\tau) A_x e^{j\omega(t-\tau)} d\tau = H(j\omega) A_x e^{j\omega t}
$$

$$
= |H(j\omega)||A_x|e^{j(\omega t + \angle A_x + \angle H(j\omega))}
$$

- $H(j\omega)$ is called the *frequency response* of the system
- **the** *amplitude* of the output is $|H(j\omega)|$ times the input amplitude
- the *phase* of the output is shifted by $\angle H(j\omega)$ with respect to the input phase
- frequency response allows us determine the system output to any sinusoidal input

Sinusoidal input: for input $\cos(\omega t + \theta) = \text{Re}(e^{j(\omega t + \theta)})$, system response is:

$$
y(t) = |H(j\omega)| \cos[\omega t + \theta + \angle H(j\omega)]
$$

[frequency response](#page-22-0) $\begin{array}{ccc} 8.22 \end{array}$

Amplitude and phase responses

Amplitude response

- \blacksquare $\vert H(j\omega)\vert$ is the amplitude gain called *amplitude response* or *magnitude response*
- plot $|H(j\omega)| \vee \omega$ shows the amplitude gain as a function of frequency ω

Phase response

- $∠H(jω)$ is the *phase response*
- plot $\angle H(j\omega)$ v ω shows how the system changes the phase of input sinusoid

Example 8.7

an LTIC system is described by the differential equation

$$
\frac{d^2y(t)}{dt^2} + 3000\frac{dy(t)}{dt} + 2 \times 10^6 y(t) = 2 \times 10^6 x(t)
$$

- (a) find its transfer function
- (b) find $y(t)$ if $x(t) = 3e^{j\pi/2}e^{j400\pi t}$
- (c) find $y(t)$ if $x(t) = 8 \cos(200\pi t)$

Solution:

(a) the transfer function is

$$
H(s) = \frac{2 \times 10^6}{s^2 + 3000s + 2 \times 10^6}
$$

(b) the frequency response is

$$
H(j\omega) = \frac{2 \times 10^6}{(j\omega)^2 + 3000(j\omega) + 2 \times 10^6} = \frac{2 \times 10^6}{2 \times 10^6 - \omega^2 + j3000\omega}
$$

using $\omega = 400\pi$, we have $H(j400\pi) = 0.5272e^{-j1.46}$, hence

$$
y(t) = (|H(j400\pi)| \times 3)e^{j(\angle H(j400\pi) + \pi/2)}e^{j400\pi t} = 1.582e^{j(400\pi t + 0.1112)}
$$

(c) we have

$$
y(t) = |H(j200\pi)| \times 8 \cos(200\pi t + \angle H(j200\pi))
$$

= 0.8078 × 8 cos(200 π t – 0.8654) = 6.4625 cos(200 π t – 0.8654)

Example 8.8

find the frequency response of a system whose transfer function is

$$
H(s) = \frac{s+0.1}{s+5}
$$

also, find the system response $y(t)$ if the input $x(t)$ is

(a) $\cos 2t$

(b) $\cos(10t - 50^{\circ})$

Solution:

$$
H(j\omega) = \frac{j\omega + 0.1}{j\omega + 5}
$$

therefore,

$$
|H(j\omega)| = \frac{\sqrt{\omega^2 + 0.01}}{\sqrt{\omega^2 + 25}} \quad \text{and} \quad \angle H(j\omega) = \tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{5}\right)
$$

(a) for the input $x(t) = \cos 2t$, $\omega = 2$, and

$$
|H(j2)| = \frac{\sqrt{(2)^2 + 0.01}}{\sqrt{(2)^2 + 25}} = 0.372
$$

\n
$$
\angle H(j2) = \tan^{-1}\left(\frac{2}{0.1}\right) - \tan^{-1}\left(\frac{2}{5}\right) = 87.1^{\circ} - 21.8^{\circ} = 65.3^{\circ}
$$

thus, the system response to the input $\cos 2t$ is

$$
y(t) = 0.372 \cos(2t + 65.3^{\circ})
$$

(b) for the input $\cos(10t - 50^{\circ})$, we have

$$
|H(j10)| = 0.894
$$
 and $\angle H(j10) = 26^{\circ}$

therefore, the system response $y(t)$ is

 $y(t) = 0.894 \cos(10t - 50^\circ + 26^\circ) = 0.894 \cos(10t - 24^\circ)$

amplitude response shows that the system has highpass filtering characteristics

[frequency response](#page-22-0) $\begin{array}{ccc} 8.28 \end{array}$

Plotting frequency response using MATLAB

$$
H(s) = \frac{s+0.1}{s+5}
$$

Method I: use anonymous function to define the transfer function $H(s)$

```
\Rightarrow H = \mathbb{Q}(s) (s+0.1)./(s+5); omega = 0:.01:20;
>> subplot(1,2,1); plot(omega,abs(H(1<sup>*</sup>omega)),'k-');
>> subplot(1,2,2); plot(omega,angle(H(1j*omega))*180/pi,'k-');
```
Method II: use the freqs command to compute frequency response

```
> B = [1 0.1]; A = [1 5]; omega = 0:.01:20; H = freqs(B,A,omega);
>> subplot(1,2,1); plot(omega,abs(H), 'k-');
>> subplot(1,2,2); plot(omega, angle(H)*180/pi,'k-');
```
both approaches generate plots that match the previous example

[frequency response](#page-22-0) $\begin{array}{ccc} 8.29 \ 8.29 \end{array}$

Example 8.9

find the steady-state expression for v_o given that the input voltage is sinusoidal

$$
v_g = 120 \cos(5000t + 30^\circ) \text{V}
$$

Solution: computing the transfer function using circuit analysis:

$$
H(s) = \frac{V_o(s)}{V_g(s)} = \frac{1000(s + 5000)}{s^2 + 6000s + 25 \times 10^6}
$$

the frequency of the voltage source is 5000rad/s and

$$
H(j5000) = \frac{1000(5000 + j5000)}{-25 * 10^6 + j5000(6000) + 25 \times 10^6}
$$

$$
= \frac{1 + j1}{j6} = \frac{1 - j1}{6} = \frac{\sqrt{2}}{6} \underline{\angle 45^\circ}
$$

thus

$$
v_{o_{ss}} = \frac{(120)\sqrt{2}}{6} \cos(5000t + 30^{\circ} - 45^{\circ})
$$

= 20\sqrt{2} \cos(5000t - 15^{\circ}) V

Ideal delay frequency response

ideal delay of T seconds $H(s) = e^{-sT}$: $|H(j\omega)| = 1$ and $\angle H(j\omega) = -\omega T$ $\angle H(j\omega)$ $H(j\omega)$ Ω Ω $(1) -$

- **■** if the input is $\cos \omega t$, the output is $\cos \omega(t T)$
- \blacksquare the amplitude response (gain) is unity for all frequencies
- the phase response is linearly proportional to the frequency ω with a slope $-T$

Ideal differentiator frequency response

ideal differentiator $H(s) = s$:

- for input cos $ωt$, the output is $ω \cos[ωt + (π/2)] = -ω \sin ωt$
- the amplitude response (gain) increases linearly with frequency ω
- the output sinusoid undergoes a phase shift $\pi/2$ with respect to the input $\cos \omega t$
- since $|H(j\omega)| = \omega$, higher-frequency components are magnified
- a differentiator can increase the noise is a signal, which is undesirable

[frequency response](#page-22-0) $\begin{array}{ccc} 8.33 \end{array}$

Ideal integrator frequency response

an ideal integrator $H(s) = \frac{1}{s}$:

- **■** if the input is $\cos \omega t$, the output is $(1/\omega) \sin \omega t = (1/\omega) \cos[\omega t (\pi/2)]$
- amplitude response is proportional to $1/\omega$, and phase response is constant $-\pi/2$
- **•** because $|H(j\omega)| = 1/\omega$, the ideal integrator suppresses higher-frequency components and enhances lower-frequency components with ω
- rapidly varying noise signals are suppressed (smoothed out) by an integrator

Steady-state response to causal sinusoidal inputs

for the input $x(t) = e^{j\omega t}u(t)$, we have (assume distinct roots)

$$
Y(s) = X(s)H(s) = X(s)\frac{P(s)}{Q(s)} = \frac{P(s)}{(s-\lambda_1)(s-\lambda_2)\cdots(s-\lambda_N)(s-j\omega)}
$$

$$
= \sum_{i=1}^{n} \frac{k_i}{s-\lambda_i} + \frac{H(j\omega)}{s-j\omega}
$$

for some constants k_i ; taking inverse Laplace transform:

$$
y(t) = \underbrace{\sum_{i=1}^{n} k_i e^{\lambda_i t} u(t)}_{\text{translation}} + \underbrace{H(j\omega)e^{j\omega t} u(t)}_{\text{steady-state component } y_{\text{ss}}(t)}
$$

- \bullet for stable system, the characteristic mode terms $e^{\lambda_i t}$ goes to zero
- \blacksquare for a causal sinusoidal input $\cos(\omega t)u(t)$, the steady-state response is

$$
y_{ss}(t) = |H(j\omega)|\cos[\omega t + \angle H(j\omega)]u(t)
$$

[frequency response](#page-22-0) $\begin{array}{ccc} 8.35 \end{array}$

Outline

- • [the transfer function](#page-1-0)
- [stability](#page-16-0)
- [frequency response](#page-22-0)
- **[LTI systems realization](#page-37-0)**
- [introduction to feedback system design*](#page-54-0)

System realization

system realization is the process of putting together system components to form an overall system with a desired transfer function

Transfer function realization ($M = N$ th-order)

$$
H(s) = \frac{b_0 s^N + b_1 s^{N-1} + \dots + b_{N-1} s + b_N}{s^N + a_1 s^{N-1} + \dots + a_{N-1} s + a_N}
$$
(8.1)

- can be realized by using integrators or differentiators with adders and multipliers
- in frequency domain realization, the integrator can be represented as $1/s$:

■ integrators can be modeled using op-amp circuits

Example: consider the specific case:

$$
H(s) = \frac{b_0 s^3 + b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3} = \frac{b_0 + \frac{b_1}{s} + \frac{b_2}{s^2} + \frac{a_3}{s^3}}{1 + \frac{a_1}{s} + \frac{a_2}{s^2} + \frac{a_3}{s^3}}
$$

to use integrators, we express $H(s)$ as

$$
H(s) = \underbrace{\left(b_0 + \frac{b_1}{s} + \frac{b_2}{s^2} + \frac{b_3}{s^3}\right)}_{H_1(s)} \underbrace{\left(\frac{1}{1 + \frac{a_1}{s} + \frac{a_2}{s^2} + \frac{a_3}{s^3}}\right)}_{H_2(s)}
$$

we can realize $H(s)$ as a cascade of $H_1(s)$ followed by $H_2(s)$

■ we have

$$
W(s) = H_1(s)X(s) = \left(b_0 + \frac{b_1}{s} + \frac{b_2}{s^2} + \frac{b_3}{s^3}\right)X(s)
$$

signal $W(s)$ can be obtained by successive integration of the input $x(t)$ \bullet we have $Y(s) = H_2(s)W(s)$, hence:

$$
W(s) = \left(1 + \frac{a_1}{s} + \frac{a_2}{s^2} + \frac{a_3}{s^3}\right)Y(s)
$$

rearranging

$$
Y(s) = W(s) - \left(\frac{a_1}{s} + \frac{a_2}{s^2} + \frac{a_3}{s^3}\right)Y(s)
$$

to obtain $\overline{Y}(s)$, we subtract $a_1 \overline{Y}(s)/s, a_2 \overline{Y}(s)/s^2$, and $a_3 \overline{Y}(s)/s^3$ from $\overline{W}(s)$ successive integration of $Y(s)$ yields $Y(s)/s, Y(s)/s^2$, and $Y(s)/s^3$

putting things together, $Y(s)$ can be synthesized (realized) as

left-half section represents $H_1(s)$ and the right-half is $H_2(s)$

Direct form I

the *direct form I* (DFI) realization to equation [\(8.1\)](#page-38-0) for any value of

this realization requires $2N$ integrators to realize an N th-order transfer function

Canonic direct form II

we can also realize $H(s)$ where $H_2(s)$ is followed by $H_1(s)$

doing so gives the canonic DFII or the **canonic direct form**:

a canonic realization has N integrators, which equals order of system

[LTI systems realization](#page-37-0) 8.41 **SA — EE312** 8.41

Example 8.10

find the canonic direct form realization of the following transfer functions:

(a)
$$
\frac{5}{s+7}
$$

\n(b) $\frac{s}{s+7}$
\n(c) $\frac{s+5}{s+7}$
\n(d) $\frac{4s+28}{s^2+6s+5}$

Solution:

(a) the transfer function is of the first order $(N = 1)$; therefore, we need only one integrator for its realization; the feedback and feedforward coefficients are

$$
a_1 = 7
$$
 and $b_0 = 0$, $b_1 = 5$

(b) we have $a_1 = 7$, $b_0 = 1$, and $b_1 = 0$ $Y(s)$ $-\overline{7}$

(c) here $H(s)$ is a first-order transfer function with $a_1 = 7$ and $b_0 = 1, b_1 = 5$

(d) this is a second-order system with $b_0 = 0, b_1 = 4, b_2 = 28, a_1 = 6$, and $a_2 = 5$;

Cascade and parallel realizations

an Nth-order transfer function $H(s)$ can be realized as a cascade (series) or parallel form of these N first-order transfer functions

Example:

$$
H(s) = \frac{4s + 28}{s^2 + 6s + 5}
$$

we can express $H(s)$ as

$$
H(s) = \frac{4s + 28}{(s+1)(s+5)} = \underbrace{\left(\frac{4s + 28}{s+1}\right)}_{H_1(s)} \underbrace{\left(\frac{1}{s+5}\right)}_{H_2(s)}
$$

we can also express $H(s)$ as a sum of partial fractions as

$$
H(s) = \frac{4s + 28}{(s+1)(s+5)} = \underbrace{\frac{6}{s+1}}_{H_3(s)} - \underbrace{\frac{2}{s+5}}_{H_4(s)}
$$

these equations give us the option of realizing $H(s)$ as a cascade of $H_1(s)$ and $H_2(s)$ or a parallel of $H_3(s)$ and $H_4(s)$

- each of the first-order transfer functions can be implemented by using canonic direct realizations, discussed earlier
- many different ways to realize a system (*e.g.*, different ways of grouping the factors)

Realizations of complex conjugate poles

the complex poles in $H(s)$ should be realized as a second-order (quadratic) factor because we cannot implement multiplication by complex numbers

Example:

$$
H(s) = \frac{10s + 50}{(s+3)(s^2+4s+13)} = \frac{2}{s+3} - \frac{1+j2}{s+2-j3} - \frac{1-j2}{s+2+j3}
$$

to realize the above, we can create a cascade realization from $H(s)$:

$$
H(s) = \left(\frac{10}{s+3}\right) \left(\frac{s+5}{s^2+4s+13}\right)
$$

or, we can create a parallel realization from $H(s)$ expressed in sum form as

$$
H(s) = \frac{2}{s+3} - \frac{2s-8}{s^2+4s+13}
$$

Example 8.11

determine the parallel realization with least amount of integrators of

$$
H(s) = \frac{7s^2 + 37s + 51}{(s+2)(s+3)^2} = \frac{5}{s+2} + \frac{2}{s+3} - \frac{3}{(s+3)^2}
$$

Solution: observe that the terms $1/(s+3)$ and $1/(s+3)^2$ can be realized with a cascade of two subsystems, each having a transfer function $1/(s + 3)$

each of the three transfer functions can realized as in the previous example

Transposed realization

transposed realization is equivalent t a given realization, generated as follows

- 1. reverse all the arrow directions without changing the scalar multiplier values
- 2. replace pickoff nodes by adders and vice versa
- 3. replace the input $X(s)$ with the output $Y(s)$ and vice versa

fig. (b) is fig. (a) reoriented in the conventional form

Example 8.12

find the transpose canonic direct realizations of

(a)
$$
\frac{s+5}{s+7}
$$

(b)
$$
\frac{4s+28}{s^2+6s+5}
$$

Solution:

(b) in this case, $N = 2$ with $b_0 = 0$, $b_1 = 4$, $b_2 = 28$, $a_1 = 6$, $a_2 = 5$ $Y(s)$

Outline

- • [the transfer function](#page-1-0)
- [stability](#page-16-0)
- [frequency response](#page-22-0)
- [LTI systems realization](#page-37-0)
- **[introduction to feedback system design*](#page-54-0)**

System design

systems aim to produce a specific output $y(t)$ for an input $x(t)$

- open-loop systems should yield the desired output but may change due to aging, component replacement, or environment
- these variations can alter the output, requiring corrections at the input
- the needed input correction is the difference between actual and desired output
- feedback of the output or its function to the input may counteract variations

Feedback

- address problems from disturbances like noise signals or environmental changes
- aim to meet objectives within tolerances adapting to system changes
- allows supervision and self-correction against parameter variations/disturbances

Example: negative feedback amplifier

• forward amplifier gain $G = 10,000$, with $H = 0.01$ feedback, gives:

$$
T = \frac{G}{1 + GH} = \frac{10,000}{1 + 100} = 99.01
$$

if G changes to 20, 000, the new gain is:

$$
T = \frac{20,000}{1 + 200} = 99.5
$$

- shows reduced sensitivity to forward gain G variations
- changing G by 100% changes T by 0.5%

Example: positive feedback amplifier

$$
T = \frac{G}{1 - GH}
$$

■ for $G=10,000$ and $H=0.9\times10^{-4},$ gain T is:

$$
T = \frac{10,000}{1 - 0.9(10^4)(10^{-4})} = 100,000
$$

with
$$
G = 11,000
$$
, new gain is:

$$
T = \frac{11,000}{1 - 0.9(11,000) (10^{-4})} = 1,100,000
$$

- \blacksquare highlights sensitivity to forward gain G changes
- positive feedback increases system gain but also sensitivity to parameter changes, leading to potential instability
- for $G = 111, 111, GH = 1$ results in $T = \infty$ and system instability

Automatic position system

controls the angular position of heavy objects like tracking antennas or gun mounts

- input θ_i is the desired angular position
- actual position θ_o measured by a potentiometer
- difference $\theta_i \theta_o$ amplified and applied to motor input
- motor stops if $\theta_i \theta_o = 0$, moves if $\theta_o \neq \theta_i$
- system controls remote object's angular position by setting input potentiometer

Block diagram of automatic position system

- amplifier gain is K (adjustable)
- **■** motor transfer function $G(s)$ relates output angle θ_{α} to input voltage
- system transfer function $T(s) = \frac{KG(s)}{1+KG(s)}$ $1+KG(s)$
- next, we examine behavior for step and ramp inputs

Step response

- step input indicates instantaneous angle change
- we want to assess transient time to reach desired angle
- **u** output $\theta_o(t)$ found for input $\theta_i(t) = u(t)$
- step input test reveals system's performance under various conditions

for step input $\theta_i(t) = u(t), \Theta_i(s) = \frac{1}{s}$,

$$
\Theta_o(s) = \frac{KG(s)}{s[1 + KG(s)]}
$$

assuming $G(s) = \frac{1}{s(s+8)}$, investigate system behavior for different K values

$$
\Theta_o(s) = \frac{\frac{K}{s(s+8)}}{s \left[1 + \frac{K}{s(s+8)}}\right]} = \frac{K}{s \left(s^2 + 8s + K\right)}
$$

we have

$$
\theta_o(t) = \left(1 - \frac{7}{6}e^{-t} + \frac{1}{6}e^{-7t}\right)u(t), \quad K = 7
$$

$$
\theta_o(t) = \left[1 + \frac{\sqrt{5}}{2}e^{-4t}\cos\left(8t + 153^\circ\right)\right]u(t), \quad K = 80
$$

response for $K = 80$ reaches final position faster but with high overshoot/oscillations

for $K = 80$

- **•** percent overshoot (PO) is 21%; peak time $t_p = 0.393$, rise time $t_r = 0.175$
- steady-state error is zero, settling time $t_s \approx 1$ second
- **a** a good system has small overshoot, t_r , t_s , and steady-state error

[introduction to feedback system design*](#page-54-0) 8.59 $\text{S}A - \text{EE312}$ 8.59

to avoid oscillations in an automatic position system, choose real characteristic roots

- **•** characteristic polynomial is $s^2 + 8s + K$
- for $K > 16$, roots are complex; for $K < 16$, roots are real
- **■** fastest response without oscillations at $K = 16$
- system is
	- critically damped at $K = 16$
	- underdamped if $K > 16$
	- overdamped if $K < 16$

for $K = 16$.

$$
\Theta_o(s) = \frac{16}{s(s^2 + 8s + 16)} = \frac{16}{s(s+4)^2}
$$

$$
= \frac{1}{s} - \frac{1}{s+4} - \frac{4}{(s+4)^2}
$$

$$
\theta_o(t) = \left[1 - (4t+1)e^{-4t}\right]u(t)
$$

Ramp response

response of to a ramp input $\theta_i(t) = t u(t)$ or $\Theta_i(s) = \frac{1}{s^2}$ when $K = 80$

$$
\Theta_o(s) = \frac{80}{s^2(s^2 + 8s + 80)} = -\frac{0.1}{s} + \frac{1}{s^2} + \frac{0.1(s - 2)}{s^2 + 8s + 80}
$$

$$
\theta_o(t) = \left[-0.1 + t + \frac{1}{8}e^{-8t}\cos(8t + 36.87^\circ) \right] u(t)
$$

response to a ramp input $\theta_i(t) = tu(t)$ with a steady-state error

- steady-state error $e_r = 0.1$ radian may be tolerable
- zero error requires compensator addition

Matlab example

using feedback system $G(s) = \frac{K}{s(s+8)}$ and $H(s) = 1$, determine step response for $K = 7, 16, 80$

■ code for unit step response

 $H = tf(1,1); K = 7; G = tf([K], conv([1 0], [1 8])); Ha = feedback(G,H);$ $H = tf(1,1); K = 16; G = tf([K].conv([1 0], [1 8])); Hb = feedback(G,H);$ $H = tf(1,1); K = 80; G = tf([K], conv([1 0], [1 8])); Hc = feedback(G,H);$ clf: step(Ha, $'k-'$,Hb, $'k--'$,Hc, $'k-.'$); $legend('K = 7', 'K = 16', 'K = 80', 'Location', 'best')$;

ode for unit ramp response when $K = 80$

```
t = 0:001:1.5; Hd = series(Hc.tf([1].[1 0]));
step(Hd,'k-',t); title('Unit Ramp Response');
```
Design specification

- transient specifications: overshoot, rise time, settling time for step input
- steady-state error: difference between desired and actual response in steady state
- sensitivity to system parameter variations or disturbances
- system stability under operating conditions

References

■ B. P. Lathi, *Linear Systems and Signals*, Oxford University Press.