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Transfer function

the transfer function of LTIC system is the Laplace transform of its impulse response:

𝐻 (𝑠) =
∫ ∞

−∞
ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏

■ ℎ(𝑡) is the impulse response (output due to impulse input 𝛿(𝑡))

■ the response of an LTIC system to an exponential 𝑥(𝑡) = 𝑒𝑠𝑡 is

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑒𝑠𝑡 =
∫ ∞

−∞
ℎ(𝜏)𝑒𝑠 (𝑡−𝜏 )𝑑𝜏 = 𝐻 (𝑠)𝑒𝑠𝑡

■ for LTI system with input 𝑥(𝑡) = 𝑒𝑠𝑡 , output is of the same form 𝑦(𝑡) = 𝐻 (𝑠)𝑒𝑠𝑡
– such input is called eigenfunction

■ an alternate definition of the transfer function 𝐻 (𝑠) of an LTI system , is

𝐻 (𝑠) = output signal

input signal

����
input=𝑒𝑠𝑡
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Zero-state response

taking Laplace transform of 𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡), we have

𝑌 (𝑠) = 𝑋 (𝑠)𝐻 (𝑠)

■ 𝐻 (𝑠) is called transfer function because it describes in the 𝑠 domain how the
system “transfers” the excitation to the response

■ if we know 𝐻 (𝑠) and 𝑋 (𝑠), then

𝑦(𝑡) = L−1 [𝑋 (𝑠)𝐻 (𝑠)]
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Transfer function of LTI differential system

𝑄(𝐷)𝑦(𝑡) = 𝑃(𝐷)𝑥(𝑡)

or

(𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁−1𝐷 + 𝑎𝑁 )𝑦(𝑡)
= (𝑏0𝐷𝑁 + 𝑏1𝐷𝑁−1 + · · · + 𝑏𝑁−1𝐷 + 𝑏𝑁 )𝑥(𝑡)

■ the transfer function for this system is

𝐻 (𝑠) = 𝑃(𝑠)
𝑄(𝑠)

■ for an LTI differential system, the transfer function is simple to obtain
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Example 8.1

consider an LTIC system described by the equation

𝑑2𝑦(𝑡)
𝑑𝑡2

+ 5
𝑑𝑦(𝑡)
𝑑𝑡

+ 6𝑦(𝑡) = 𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑥(𝑡)

find the transfer function and the zero-state response if the input 𝑥(𝑡) = 3𝑒−5𝑡𝑢(𝑡)
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Solution: the system equation is(
𝐷2 + 5𝐷 + 6

)︸            ︷︷            ︸
𝑄 (𝐷)

𝑦(𝑡) = (𝐷 + 1)︸   ︷︷   ︸
𝑃 (𝐷)

𝑥(𝑡)

therefore,

𝐻 (𝑠) = 𝑃(𝑠)
𝑄(𝑠) =

𝑠 + 1

𝑠2 + 5𝑠 + 6

since

𝑋 (𝑠) = L
[
3𝑒−5𝑡𝑢(𝑡)

]
=

3

𝑠 + 5

we have

𝑌 (𝑠) = 𝑋 (𝑠)𝐻 (𝑠) = 3(𝑠 + 1)
(𝑠 + 5) (𝑠2 + 5𝑠 + 6) =

−2
𝑠 + 5

− 1

𝑠 + 2
+ 3

𝑠 + 3

the inverse Laplace transform of this equation is

𝑦(𝑡) =
(
−2𝑒−5𝑡 − 𝑒−2𝑡 + 3𝑒−3𝑡

)
𝑢(𝑡)
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Example 8.2

show that the transfer function of:

(a) an ideal delay of 𝑇 seconds is 𝑒−𝑠𝑇

(b) an ideal differentiator is 𝑠

(c) an ideal integrator is 1/𝑠

Solution:

(a) for an ideal delay of 𝑇 seconds, the input 𝑥(𝑡) and output 𝑦(𝑡) are related by

𝑦(𝑡) = 𝑥(𝑡 − 𝑇) and 𝑌 (𝑠) = 𝑋 (𝑠)𝑒−𝑠𝑇

therefore,

𝐻 (𝑠) = 𝑌 (𝑠)
𝑋 (𝑠) = 𝑒−𝑠𝑇
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(b) for an ideal differentiator, the input 𝑥(𝑡) and the output 𝑦(𝑡) are related by

𝑦(𝑡) = 𝑑𝑥(𝑡)
𝑑𝑡

the Laplace transform of this equation is

𝑌 (𝑠) = 𝑠𝑋 (𝑠) [𝑥 (0−) = 0 for a causal signal]

hence

𝐻 (𝑠) = 𝑌 (𝑠)
𝑋 (𝑠) = 𝑠

(c) for an ideal integrator with zero initial state, 𝑦 (0−) = 0,

𝑦(𝑡) =
∫ 𝑡

0

𝑥(𝜏)𝑑𝜏 and 𝑌 (𝑠) = 1

𝑠
𝑋 (𝑠)

therefore,

𝐻 (𝑠) = 1

𝑠
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Example 8.3

find the transfer function relating 𝑉𝐶 (𝑠) to input voltage 𝑉 (𝑠)
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Solution: the Laplace circuit is

the voltage across the capacitor is some proportion of the input voltage, namely the
impedance of the capacitor divided by the sum of the impedances; thus,

𝑉𝐶 (𝑠) =
1/𝐶𝑠(

𝐿𝑠 + 𝑅 + 1
𝐶𝑠

)𝑉 (𝑠)
solving for the transfer function, 𝑉𝐶 (𝑠)/𝑉 (𝑠), yields

𝑉𝐶 (𝑠)
𝑉 (𝑠) =

1/𝐿𝐶
𝑠2 + 𝑅

𝐿
𝑠 + 1

𝐿𝐶
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Example 8.4

find the transfer function, 𝑉𝐶 (𝑠)/𝑉 (𝑠), for the circuit using nodal analysis

recall that the admittance, 𝑌 (𝑠) is the reciprocal of impedance:

𝑌 (𝑠) = 1

𝑍 (𝑠) =
𝐼 (𝑠)
𝑉 (𝑠)

when writing nodal equations, it can be more convenient to use admittance
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Solution: the sum of currents flowing from the nodes marked 𝑉𝐿 (𝑠) and 𝑉𝐶 (𝑠) are

𝑉𝐿 (𝑠) −𝑉 (𝑠)
𝑅1

+ 𝑉𝐿 (𝑠)
𝐿𝑠

+ 𝑉𝐿 (𝑠) −𝑉𝐶 (𝑠)
𝑅2

= 0

𝐶𝑠𝑉𝐶 (𝑠) +
𝑉𝐶 (𝑠) −𝑉𝐿 (𝑠)

𝑅2
= 0

rearranging and using conductances, 𝐺1 = 1/𝑅1 and 𝐺2 = 1/𝑅2, we obtain,(
𝐺1 + 𝐺2 +

1

𝐿𝑠

)
𝑉𝐿 (𝑠) − 𝐺2𝑉𝐶 (𝑠) = 𝑉 (𝑠)𝐺1

−𝐺2𝑉𝐿 (𝑠) + (𝐺2 + 𝐶𝑠)𝑉𝐶 (𝑠) = 0

solving for the transfer function, 𝑉𝐶 (𝑠)/𝑉 (𝑠), yields

𝑉𝐶 (𝑠)
𝑉 (𝑠) =

𝐺1𝐺2

𝐶
𝑠

(𝐺1 + 𝐺2) 𝑠2 + 𝐺1𝐺2𝐿+𝐶
𝐿𝐶

𝑠 + 𝐺2

𝐿𝐶
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Block diagrams

we can represent an LTI system using its transfer function using block diagrams

■ 𝑌 (𝑠) = 𝑋 (𝑠)𝐻 (𝑠)

■ large systems are conveniently represented by block diagrams
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Cascade and parallel connections

Cascade interconnection

𝑌 (𝑠)
𝑋 (𝑠) =

𝑊 (𝑠)
𝑋 (𝑠)

𝑌 (𝑠)
𝑊 (𝑠) = 𝐻1 (𝑠)𝐻2 (𝑠)

Parallel interconnection
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Feedback interconnection

𝑌 (𝑠)
𝑋 (𝑠) =

𝐺 (𝑠)
1 + 𝐺 (𝑠)𝐻 (𝑠)
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Inverse systems

if 𝐻 (𝑠) is the t.f. of a system S , then the t.f. of its inverse system S𝑖 is

𝐻𝑖 (𝑠) =
1

𝐻 (𝑠)

■ this follows from the fact that ℎ(𝑡) ∗ ℎ𝑖 (𝑡) = 𝛿(𝑡), implying 𝐻 (𝑠)𝐻𝑖 (𝑠) = 1

■ for example, an ideal integrator and its inverse, an ideal differentiator, have
transfer functions 1/𝑠 and 𝑠, respectively, leading to 𝐻 (𝑠)𝐻𝑖 (𝑠) = 1
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BIBO Stability

given transfer function 𝐻 (𝑠) = 𝑃(𝑠)/𝑄(𝑠), then the LTI system is

■ BIBO-stable if the poles of 𝐻 (𝑠) are in LHP (excluding 𝑗𝜔-axis)

■ BIBO-unstable if at least one pole of 𝐻 (𝑠) is not in LHP

Improper system: if 𝑀 > 𝑁 , then the system is BIBO-unstable

■ this is because, using long division, we obtain 𝐻 (𝑠) = 𝑅(𝑠) + 𝐻𝑝 (𝑠), where
𝑅(𝑠) is an (𝑀 − 𝑁)th-order polynomial and 𝐻𝑝 (𝑠) is a proper transfer function

■ for example,

𝐻 (𝑠) = 𝑠3 + 4𝑠2 + 4𝑠 + 5

𝑠2 + 3𝑠 + 2
= 𝑠 + 𝑠

2 + 2𝑠 + 5

𝑠2 + 3𝑠 + 2

the term 𝑠 is the transfer function of an ideal differentiator

■ applying unit-step function, the output will contain an impulse (unbounded output)
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Asymptotic (internal) stability

if 𝐻 (𝑠) = 𝑃(𝑠)
𝑄(𝑠) and 𝑃(𝑠), 𝑄(𝑠) have no common factors, then the LTI system is

1. asymptotically stable if and only if all the poles of 𝐻 (𝑠) are in the LHP

2. marginally stable if and only if there are no poles of 𝐻 (𝑠) in the RHP and some
unrepeated poles on the imaginary axis

3. unstable if and only if either one or both of the following conditions exist:
(i) at least one pole of 𝐻 (𝑠) is in the RHP;

(ii) there are repeated poles of 𝐻 (𝑠) on the imaginary axis
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Example 8.5

determine the BIBO and asymptotic stability of the composite (cascade) system

Solution: the transfer function of the cascade system is

𝐻 (𝑠) = 𝐻1 (𝑠)𝐻2 (𝑠) =
(

1

𝑠 − 1

) (
𝑠 − 1

𝑠 + 1

)
=

1

𝑠 + 1

thus, the system is BIBO-stable since all poles are in LHP

to determine the asymptotic stability,

■ note that S1 has one characteristic root at 1, and S2 also has one root at −1
■ hence, the composite system has a RHP root at +1, and is asymptotically unstable
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Example 8.6

consider a feedback system on page 8.15 with

𝐺 (𝑠) = 𝐾/𝑠(𝑠 + 8) and 𝐻 (𝑠) = 1

determine the transfer function and BIBO stability of the system when:
(a) 𝐾 = 7; (b) 𝐾 = 16 ; (c) 𝐾 = 80

Solution: we have

𝐻feedback (𝑠) =
𝐺 (𝑠)

1 + 𝐺 (𝑠)𝐻 (𝑠) =
𝐾/(𝑠(𝑠 + 8))

1 + 𝐾/(𝑠(𝑠 + 8)) =
𝐾

𝑠2 + 8𝑠 + 𝐾

hence

(a) 𝐻feedback(𝑠) = 7/(𝑠2 + 8𝑠 + 7), the poles are 𝑠 = −1,−7 on LHP, hence stable

(b) 𝐻feedback(𝑠) = 7/(𝑠2 + 8𝑠 + 16), the poles are 𝑠 = −4,−4 on LHP, hence stable

(c) 𝐻feedback(𝑠) = 7/(𝑠2 + 8𝑠 + 80), the poles are 𝑠 = −4 ± 8 𝑗 on LHP, hence stable

SA — EE312stability 8.20



Matlab feedback function

we can use MATLAB feedback function to determine the transfer function in the
previous example

(a) >> H = tf(1,1); K = 7; G = tf([0 0 K],[1 8 0]);

TFa = feedback(G,H)

Ha =

7

-------------

s^2 + 8 s + 7

(b) >> H = tf(1,1); K = 16; G = tf([0 0 K],[1 8 0]);

TFb = feedback(G,H)

Hb =

16

--------------

s^2 + 8 s + 16

(c) >> H = tf(1,1); K = 80; G = tf([0 0 K],[1 8 0]);

TFc = feedback(G,H)

Hc =

80

--------------

s^2 + 8 s + 80
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Frequency response

Frequency response: the response of an LTI system ℎ(𝑡) to complex sinusoid

𝑥(𝑡) = 𝐴𝑥𝑒 𝑗𝜔𝑡 = |𝐴𝑥 |𝑒 𝑗 (𝜔𝑡+∠𝐴𝑥 )

is

𝑦(𝑡) =
∫ ∞

−∞
ℎ(𝜏)𝐴𝑥𝑒 𝑗𝜔 (𝑡−𝜏 )𝑑𝜏 = 𝐻 ( 𝑗𝜔)𝐴𝑥𝑒 𝑗𝜔𝑡

= |𝐻 ( 𝑗𝜔) | |𝐴𝑥 |𝑒 𝑗 (𝜔𝑡+∠𝐴𝑥+∠𝐻 ( 𝑗𝜔) )

■ 𝐻 ( 𝑗𝜔) is called the frequency response of the system

■ the amplitude of the output is |𝐻 ( 𝑗𝜔) | times the input amplitude

■ the phase of the output is shifted by ∠𝐻 ( 𝑗𝜔) with respect to the input phase

■ frequency response allows us determine the system output to any sinusoidal input

Sinusoidal input: for input cos(𝜔𝑡 + 𝜃) = Re(𝑒 𝑗 (𝜔𝑡+𝜃 ) ), system response is:

𝑦(𝑡) = |𝐻 ( 𝑗𝜔) | cos[𝜔𝑡 + 𝜃 + ∠𝐻 ( 𝑗𝜔)]
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Amplitude and phase responses

Amplitude response

■ |𝐻 ( 𝑗𝜔) | is the amplitude gain called amplitude response or magnitude response

■ plot |𝐻 ( 𝑗𝜔) | v 𝜔 shows the amplitude gain as a function of frequency 𝜔

Phase response

■ ∠𝐻 ( 𝑗𝜔) is the phase response

■ plot ∠𝐻 ( 𝑗𝜔) v 𝜔 shows how the system changes the phase of input sinusoid
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Example 8.7

an LTIC system is described by the differential equation

𝑑2𝑦(𝑡)
𝑑𝑡2

+ 3000
𝑑𝑦(𝑡)
𝑑𝑡

+ 2 × 106𝑦(𝑡) = 2 × 106𝑥(𝑡)

(a) find its transfer function

(b) find 𝑦(𝑡) if 𝑥(𝑡) = 3𝑒 𝑗 𝜋/2𝑒 𝑗400𝜋𝑡

(c) find 𝑦(𝑡) if 𝑥(𝑡) = 8 cos(200𝜋𝑡)
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Solution:

(a) the transfer function is

𝐻 (𝑠) = 2 × 106

𝑠2 + 3000𝑠 + 2 × 106

(b) the frequency response is

𝐻 ( 𝑗𝜔) = 2 × 106

( 𝑗𝜔)2 + 3000( 𝑗𝜔) + 2 × 106
=

2 × 106

2 × 106 − 𝜔2 + 𝑗3000𝜔

using 𝜔 = 400𝜋, we have 𝐻 ( 𝑗400𝜋) = 0.5272𝑒− 𝑗1.46, hence

𝑦(𝑡) = ( |𝐻 ( 𝑗400𝜋) | × 3)𝑒 𝑗 (∠𝐻 ( 𝑗400𝜋 )+𝜋/2)𝑒 𝑗400𝜋𝑡 = 1.582𝑒 𝑗 (400𝜋𝑡+0.1112)

(c) we have

𝑦(𝑡) = |𝐻 ( 𝑗200𝜋) | × 8 cos(200𝜋𝑡 + ∠𝐻 ( 𝑗200𝜋))
= 0.8078 × 8 cos(200𝜋𝑡 − 0.8654) = 6.4625 cos(200𝜋𝑡 − 0.8654)
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Example 8.8

find the frequency response of a system whose transfer function is

𝐻 (𝑠) = 𝑠 + 0.1

𝑠 + 5

also, find the system response 𝑦(𝑡) if the input 𝑥(𝑡) is

(a) cos 2𝑡

(b) cos (10𝑡 − 50◦)

Solution:

𝐻 ( 𝑗𝜔) = 𝑗𝜔 + 0.1

𝑗𝜔 + 5

therefore,

|𝐻 ( 𝑗𝜔) | =
√
𝜔2 + 0.01
√
𝜔2 + 25

and ∠𝐻 ( 𝑗𝜔) = tan−1
( 𝜔
0.1

)
− tan−1

(𝜔
5

)
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(a) for the input 𝑥(𝑡) = cos 2𝑡, 𝜔 = 2, and

|𝐻 ( 𝑗2) | =
√︁
(2)2 + 0.01√︁
(2)2 + 25

= 0.372

∠𝐻 ( 𝑗2) = tan−1 ( 2
0.1

)
− tan−1 ( 2

5

)
= 87.1◦ − 21.8◦ = 65.3◦

thus, the system response to the input cos 2𝑡 is

𝑦(𝑡) = 0.372 cos (2𝑡 + 65.3◦)
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(b) for the input cos (10𝑡 − 50◦), we have

|𝐻 ( 𝑗10) | = 0.894 and ∠𝐻 ( 𝑗10) = 26◦

therefore, the system response 𝑦(𝑡) is

𝑦(𝑡) = 0.894 cos (10𝑡 − 50◦ + 26◦) = 0.894 cos (10𝑡 − 24◦)

amplitude response shows that the system has highpass filtering characteristics
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Plotting frequency response using MATLAB

𝐻 (𝑠) = 𝑠 + 0.1

𝑠 + 5

Method I: use anonymous function to define the transfer function 𝐻 (𝑠)

>> H = @(s) (s+0.1)./(s+5); omega = 0:.01:20;

>> subplot(1,2,1); plot(omega,abs(H(1j*omega)),’k-’);

>> subplot(1,2,2); plot(omega,angle(H(1j*omega))*180/pi,’k-’);

Method II: use the freqs command to compute frequency response

>> B = [1 0.1]; A = [1 5]; omega = 0:.01:20; H = freqs(B,A,omega);

>> subplot(1,2,1); plot(omega,abs(H),’k-’);

>> subplot(1,2,2); plot(omega,angle(H)*180/pi,’k-’);

both approaches generate plots that match the previous example
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Example 8.9

find the steady-state expression for 𝑣𝑜 given that the input voltage is sinusoidal

𝑣𝑔 = 120 cos(5000𝑡 + 30◦)V
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Solution: computing the transfer function using circuit analysis:

𝐻 (𝑠) = 𝑉𝑜 (𝑠)
𝑉𝑔 (𝑠)

=
1000(𝑠 + 5000)

𝑠2 + 6000𝑠 + 25 × 106

the frequency of the voltage source is 5000rad/s and

𝐻 ( 𝑗5000) = 1000(5000 + 𝑗5000)
−25 ∗ 106 + 𝑗5000(6000) + 25 × 106

=
1 + 𝑗1
𝑗6

=
1 − 𝑗1

6
=

√
2

6
−45◦

thus

𝑣𝑜𝑠𝑠 =
(120)

√
2

6
cos (5000𝑡 + 30◦ − 45◦)

= 20
√
2 cos (5000𝑡 − 15◦)V
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Ideal delay frequency response

ideal delay of 𝑇 seconds 𝐻 (𝑠) = 𝑒−𝑠𝑇 :

|𝐻 ( 𝑗𝜔) | = 1 and ∠𝐻 ( 𝑗𝜔) = −𝜔𝑇

■ if the input is cos𝜔𝑡, the output is cos𝜔(𝑡 − 𝑇)

■ the amplitude response (gain) is unity for all frequencies

■ the phase response is linearly proportional to the frequency 𝜔 with a slope −𝑇
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Ideal differentiator frequency response

ideal differentiator 𝐻 (𝑠) = 𝑠:

|𝐻 ( 𝑗𝜔) | = 𝜔 and ∠𝐻 ( 𝑗𝜔) = 𝜋

2

■ for input cos𝜔𝑡, the output is 𝜔 cos[𝜔𝑡 + (𝜋/2)] = −𝜔 sin𝜔𝑡

■ the amplitude response (gain) increases linearly with frequency 𝜔

■ the output sinusoid undergoes a phase shift 𝜋/2 with respect to the input cos𝜔𝑡

■ since |𝐻 ( 𝑗𝜔) | = 𝜔, higher-frequency components are magnified

■ a differentiator can increase the noise is a signal, which is undesirable
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Ideal integrator frequency response

an ideal integrator 𝐻 (𝑠) = 1
𝑠

:

|𝐻 ( 𝑗𝜔) | = 1

𝜔
and ∠𝐻 ( 𝑗𝜔) = −𝜋

2

■ if the input is cos𝜔𝑡, the output is (1/𝜔) sin𝜔𝑡 = (1/𝜔) cos[𝜔𝑡 − (𝜋/2)]

■ amplitude response is proportional to 1/𝜔, and phase response is constant −𝜋/2

■ because |𝐻 ( 𝑗𝜔) | = 1/𝜔, the ideal integrator suppresses higher-frequency
components and enhances lower-frequency components with 𝜔

■ rapidly varying noise signals are suppressed (smoothed out) by an integrator
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Steady-state response to causal sinusoidal inputs

for the input 𝑥(𝑡) = 𝑒 𝑗𝜔𝑡𝑢(𝑡), we have (assume distinct roots)

𝑌 (𝑠) = 𝑋 (𝑠)𝐻 (𝑠) = 𝑋 (𝑠) 𝑃(𝑠)
𝑄(𝑠) =

𝑃(𝑠)
(𝑠 − 𝜆1) (𝑠 − 𝜆2) · · · (𝑠 − 𝜆𝑁 ) (𝑠 − 𝑗𝜔)

=

𝑛∑︁
𝑖=1

𝑘𝑖

𝑠 − 𝜆𝑖
+ 𝐻 ( 𝑗𝜔)
𝑠 − 𝑗𝜔

for some constants 𝑘𝑖 ; taking inverse Laplace transform:

𝑦(𝑡) =
𝑛∑︁
𝑖=1

𝑘𝑖𝑒
𝜆𝑖 𝑡𝑢(𝑡)︸           ︷︷           ︸

transient component 𝑦tr (𝑡 )

+ 𝐻 ( 𝑗𝜔)𝑒 𝑗𝜔𝑡𝑢(𝑡)︸              ︷︷              ︸
steady-state component 𝑦ss (𝑡 )

■ for stable system, the characteristic mode terms 𝑒𝜆𝑖 𝑡 goes to zero

■ for a causal sinusoidal input cos(𝜔𝑡)𝑢(𝑡), the steady-state response is

𝑦ss (𝑡) = |𝐻 ( 𝑗𝜔) | cos[𝜔𝑡 + ∠𝐻 ( 𝑗𝜔)]𝑢(𝑡)
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System realization

system realization is the process of putting together system components to form an
overall system with a desired transfer function

Transfer function realization (𝑀 = 𝑁 th-order)

𝐻 (𝑠) = 𝑏0𝑠
𝑁 + 𝑏1𝑠𝑁−1 + · · · + 𝑏𝑁−1𝑠 + 𝑏𝑁

𝑠𝑁 + 𝑎1𝑠𝑁−1 + · · · + 𝑎𝑁−1𝑠 + 𝑎𝑁
(8.1)

■ can be realized by using integrators or differentiators with adders and multipliers

■ in frequency domain realization, the integrator can be represented as 1/𝑠:

■ integrators can be modeled using op-amp circuits
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Example: consider the specific case:

𝐻 (𝑠) = 𝑏0𝑠
3 + 𝑏1𝑠2 + 𝑏2𝑠 + 𝑏3

𝑠3 + 𝑎1𝑠2 + 𝑎2𝑠 + 𝑎3
=
𝑏0 + 𝑏1

𝑠
+ 𝑏2
𝑠2

+ 𝑏3
𝑠3

1 + 𝑎1
𝑠
+ 𝑎2
𝑠2

+ 𝑎3
𝑠3

to use integrators, we express 𝐻 (𝑠) as

𝐻 (𝑠) =
(
𝑏0 +

𝑏1

𝑠
+ 𝑏2
𝑠2

+ 𝑏3
𝑠3

)
︸                      ︷︷                      ︸

𝐻1 (𝑠)

(
1

1 + 𝑎1
𝑠
+ 𝑎2
𝑠2

+ 𝑎3
𝑠3

)
︸                   ︷︷                   ︸

𝐻2 (𝑠)

we can realize 𝐻 (𝑠) as a cascade of 𝐻1 (𝑠) followed by 𝐻2 (𝑠)
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■ we have

𝑊 (𝑠) = 𝐻1 (𝑠)𝑋 (𝑠) =
(
𝑏0 +

𝑏1

𝑠
+ 𝑏2
𝑠2

+ 𝑏3
𝑠3

)
𝑋 (𝑠)

signal𝑊 (𝑠) can be obtained by successive integration of the input 𝑥(𝑡)
■ we have 𝑌 (𝑠) = 𝐻2 (𝑠)𝑊 (𝑠), hence:

𝑊 (𝑠) =
(
1 + 𝑎1

𝑠
+ 𝑎2
𝑠2

+ 𝑎3
𝑠3

)
𝑌 (𝑠)

rearranging

𝑌 (𝑠) = 𝑊 (𝑠) −
( 𝑎1
𝑠

+ 𝑎2
𝑠2

+ 𝑎3
𝑠3

)
𝑌 (𝑠)

to obtain 𝑌 (𝑠), we subtract 𝑎1𝑌 (𝑠)/𝑠, 𝑎2𝑌 (𝑠)/𝑠2, and 𝑎3𝑌 (𝑠)/𝑠3 from𝑊 (𝑠)

successive integration of 𝑌 (𝑠) yields 𝑌 (𝑠)/𝑠,𝑌 (𝑠)/𝑠2, and 𝑌 (𝑠)/𝑠3
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putting things together, 𝑌 (𝑠) can be synthesized (realized) as

left-half section represents 𝐻1 (𝑠) and the right-half is 𝐻2 (𝑠)
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Direct form I

the direct form I (DFI) realization to equation (8.1) for any value of 𝑁

this realization requires 2𝑁 integrators to realize an 𝑁 th-order transfer function
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Canonic direct form II

we can also realize 𝐻 (𝑠) where 𝐻2 (𝑠) is followed by 𝐻1 (𝑠)

doing so gives the canonic DFII or the canonic direct form:

a canonic realization has 𝑁 integrators, which equals order of system
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Example 8.10

find the canonic direct form realization of the following transfer functions:

(a)
5

𝑠 + 7

(b)
𝑠

𝑠 + 7

(c)
𝑠 + 5

𝑠 + 7

(d)
4𝑠 + 28

𝑠2 + 6𝑠 + 5
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Solution:

(a) the transfer function is of the first order (𝑁 = 1); therefore, we need only one
integrator for its realization; the feedback and feedforward coefficients are

𝑎1 = 7 and 𝑏0 = 0, 𝑏1 = 5

(b) we have 𝑎1 = 7, 𝑏0 = 1, and 𝑏1 = 0
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(c) here 𝐻 (𝑠) is a first-order transfer function with 𝑎1 = 7 and 𝑏0 = 1, 𝑏1 = 5

(d) this is a second-order system with 𝑏0 = 0, 𝑏1 = 4, 𝑏2 = 28, 𝑎1 = 6, and 𝑎2 = 5;
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Cascade and parallel realizations

an 𝑁 th-order transfer function 𝐻 (𝑠) can be realized as a cascade (series) or parallel
form of these 𝑁 first-order transfer functions

Example:

𝐻 (𝑠) = 4𝑠 + 28

𝑠2 + 6𝑠 + 5

we can express 𝐻 (𝑠) as

𝐻 (𝑠) = 4𝑠 + 28

(𝑠 + 1) (𝑠 + 5) =

(
4𝑠 + 28

𝑠 + 1

)
︸      ︷︷      ︸
𝐻1 (𝑠)

(
1

𝑠 + 5

)
︸  ︷︷  ︸
𝐻2 (𝑠)

we can also express 𝐻 (𝑠) as a sum of partial fractions as

𝐻 (𝑠) = 4𝑠 + 28

(𝑠 + 1) (𝑠 + 5) =
6

𝑠 + 1︸︷︷︸
𝐻3 (𝑠)

− 2

𝑠 + 5︸︷︷︸
𝐻4 (𝑠)
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these equations give us the option of realizing 𝐻 (𝑠) as a cascade of 𝐻1 (𝑠) and
𝐻2 (𝑠) or a parallel of 𝐻3 (𝑠) and 𝐻4 (𝑠)

■ each of the first-order transfer functions can be implemented by using canonic
direct realizations, discussed earlier

■ many different ways to realize a system (e.g., different ways of grouping the
factors)
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Realizations of complex conjugate poles

the complex poles in 𝐻 (𝑠) should be realized as a second-order (quadratic) factor
because we cannot implement multiplication by complex numbers

Example:

𝐻 (𝑠) = 10𝑠 + 50

(𝑠 + 3) (𝑠2 + 4𝑠 + 13) =
2

𝑠 + 3
− 1 + 𝑗2
𝑠 + 2 − 𝑗3

− 1 − 𝑗2

𝑠 + 2 + 𝑗3

to realize the above, we can create a cascade realization from 𝐻 (𝑠):

𝐻 (𝑠) =
(
10

𝑠 + 3

) (
𝑠 + 5

𝑠2 + 4𝑠 + 13

)
or, we can create a parallel realization from 𝐻 (𝑠) expressed in sum form as

𝐻 (𝑠) = 2

𝑠 + 3
− 2𝑠 − 8

𝑠2 + 4𝑠 + 13
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Example 8.11

determine the parallel realization with least amount of integrators of

𝐻 (𝑠) = 7𝑠2 + 37𝑠 + 51

(𝑠 + 2) (𝑠 + 3)2 =
5

𝑠 + 2
+ 2

𝑠 + 3
− 3

(𝑠 + 3)2

Solution: observe that the terms 1/(𝑠 + 3) and 1/(𝑠 + 3)2 can be realized with a
cascade of two subsystems, each having a transfer function 1/(𝑠 + 3)

each of the three transfer functions can realized as in the previous example
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Transposed realization

transposed realization is equivalent t a given realization, generated as follows

1. reverse all the arrow directions without changing the scalar multiplier values

2. replace pickoff nodes by adders and vice versa

3. replace the input 𝑋 (𝑠) with the output 𝑌 (𝑠) and vice versa

fig. (b) is fig. (a) reoriented in the conventional form
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Example 8.12

find the transpose canonic direct realizations of

(a)
𝑠 + 5

𝑠 + 7

(b)
4𝑠 + 28

𝑠2 + 6𝑠 + 5
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Solution:

(a) here, 𝑁 = 1 with 𝑎1 = 7, 𝑏0 = 1, 𝑏1 = 5

(b) in this case, 𝑁 = 2 with 𝑏0 = 0, 𝑏1 = 4, 𝑏2 = 28, 𝑎1 = 6, 𝑎2 = 5
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System design

systems aim to produce a specific output 𝑦(𝑡) for an input 𝑥(𝑡)

■ open-loop systems should yield the desired output but may change due to aging,
component replacement, or environment

■ these variations can alter the output, requiring corrections at the input

■ the needed input correction is the difference between actual and desired output

■ feedback of the output or its function to the input may counteract variations
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Feedback

■ address problems from disturbances like noise signals or environmental changes

■ aim to meet objectives within tolerances adapting to system changes

■ allows supervision and self-correction against parameter variations/disturbances
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Example: negative feedback amplifier

■ forward amplifier gain 𝐺 = 10, 000, with 𝐻 = 0.01 feedback, gives:

𝑇 =
𝐺

1 + 𝐺𝐻 =
10, 000

1 + 100
= 99.01

■ if 𝐺 changes to 20, 000, the new gain is:

𝑇 =
20, 000

1 + 200
= 99.5

■ shows reduced sensitivity to forward gain 𝐺 variations

■ changing 𝐺 by 100% changes 𝑇 by 0.5%

SA — EE312introduction to feedback system design* 8.54



Example: positive feedback amplifier

𝑇 =
𝐺

1 − 𝐺𝐻

■ for 𝐺 = 10, 000 and 𝐻 = 0.9 × 10−4, gain 𝑇 is:

𝑇 =
10, 000

1 − 0.9 (104) (10−4) = 100, 000

■ with 𝐺 = 11, 000, new gain is:

𝑇 =
11, 000

1 − 0.9(11, 000) (10−4) = 1, 100, 000

■ highlights sensitivity to forward gain 𝐺 changes

■ positive feedback increases system gain but also sensitivity to parameter
changes, leading to potential instability

■ for 𝐺 = 111, 111, 𝐺𝐻 = 1 results in 𝑇 = ∞ and system instability
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Automatic position system

controls the angular position of heavy objects like tracking antennas or gun mounts

■ input 𝜃𝑖 is the desired angular position

■ actual position 𝜃𝑜 measured by a potentiometer

■ difference 𝜃𝑖 − 𝜃𝑜 amplified and applied to motor input

■ motor stops if 𝜃𝑖 − 𝜃𝑜 = 0, moves if 𝜃𝑜 ≠ 𝜃𝑖

■ system controls remote object’s angular position by setting input potentiometer
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Block diagram of automatic position system

■ amplifier gain is 𝐾 (adjustable)

■ motor transfer function 𝐺 (𝑠) relates output angle 𝜃𝑜 to input voltage

■ system transfer function 𝑇 (𝑠) = 𝐾𝐺 (𝑠)
1+𝐾𝐺 (𝑠)

■ next, we examine behavior for step and ramp inputs
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Step response

■ step input indicates instantaneous angle change

■ we want to assess transient time to reach desired angle

■ output 𝜃𝑜 (𝑡) found for input 𝜃𝑖 (𝑡) = 𝑢(𝑡)
■ step input test reveals system’s performance under various conditions

for step input 𝜃𝑖 (𝑡) = 𝑢(𝑡),Θ𝑖 (𝑠) = 1
𝑠

,

Θ𝑜 (𝑠) =
𝐾𝐺 (𝑠)

𝑠[1 + 𝐾𝐺 (𝑠)]

assuming 𝐺 (𝑠) = 1
𝑠 (𝑠+8) , investigate system behavior for different 𝐾 values

Θ𝑜 (𝑠) =
𝐾

𝑠 (𝑠+8)

𝑠

[
1 + 𝐾

𝑠 (𝑠+8)

] =
𝐾

𝑠 (𝑠2 + 8𝑠 + 𝐾)
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we have

𝜃𝑜 (𝑡) =
(
1 − 7

6 𝑒
−𝑡 + 1

6 𝑒
−7𝑡 ) 𝑢(𝑡), 𝐾 = 7

𝜃𝑜 (𝑡) =
[
1 +

√
5
2 𝑒

−4𝑡 cos (8𝑡 + 153◦)
]
𝑢(𝑡), 𝐾 = 80

response for 𝐾 = 80 reaches final position faster but with high overshoot/oscillations

for 𝐾 = 80

■ percent overshoot (PO) is 21%; peak time 𝑡𝑝 = 0.393, rise time 𝑡𝑟 = 0.175

■ steady-state error is zero, settling time 𝑡𝑠 ≈ 1 second

■ a good system has small overshoot, 𝑡𝑟 , 𝑡𝑠 , and steady-state error
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to avoid oscillations in an automatic position system, choose real characteristic roots

■ characteristic polynomial is 𝑠2 + 8𝑠 + 𝐾
■ for 𝐾 > 16, roots are complex; for 𝐾 < 16, roots are real

■ fastest response without oscillations at 𝐾 = 16

■ system is
– critically damped at 𝐾 = 16
– underdamped if 𝐾 > 16
– overdamped if 𝐾 < 16

for 𝐾 = 16,

Θ𝑜 (𝑠) =
16

𝑠(𝑠2 + 8𝑠 + 16) =
16

𝑠(𝑠 + 4)2

=
1

𝑠
− 1

𝑠 + 4
− 4

(𝑠 + 4)2
𝜃𝑜 (𝑡) =

[
1 − (4𝑡 + 1)𝑒−4𝑡

]
𝑢(𝑡)
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Ramp response

response of to a ramp input 𝜃𝑖 (𝑡) = 𝑡𝑢(𝑡) or Θ𝑖 (𝑠) = 1
𝑠2

when 𝐾 = 80

Θ𝑜 (𝑠) =
80

𝑠2 (𝑠2 + 8𝑠 + 80) = −0.1

𝑠
+ 1

𝑠2
+ 0.1(𝑠 − 2)
𝑠2 + 8𝑠 + 80

𝜃𝑜 (𝑡) =
[
−0.1 + 𝑡 + 1

8 𝑒
−8𝑡 cos(8𝑡 + 36.87◦)

]
𝑢(𝑡)

response to a ramp input 𝜃𝑖 (𝑡) = 𝑡𝑢(𝑡) with a steady-state error

■ steady-state error 𝑒𝑟 = 0.1 radian may be tolerable

■ zero error requires compensator addition
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Matlab example

using feedback system 𝐺 (𝑠) = 𝐾
𝑠 (𝑠+8) and 𝐻 (𝑠) = 1, determine step response for

𝐾 = 7, 16, 80

■ code for unit step response
H = tf(1,1); K = 7; G = tf([K],conv([1 0],[1 8])); Ha = feedback(G,H);

H = tf(1,1); K = 16; G = tf([K],conv([1 0],[1 8])); Hb = feedback(G,H);

H = tf(1,1); K = 80; G = tf([K],conv([1 0],[1 8])); Hc = feedback(G,H);

clf; step(Ha,’k-’,Hb,’k--’,Hc,’k-.’);

legend(’K = 7’,’K = 16’,’K = 80’,’Location’,’best’);

■ code for unit ramp response when 𝐾 = 80

t = 0:.001:1.5; Hd = series(Hc,tf([1],[1 0]));

step(Hd,’k-’,t); title(’Unit Ramp Response’);
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Design specification

■ transient specifications: overshoot, rise time, settling time for step input

■ steady-state error: difference between desired and actual response in steady state

■ sensitivity to system parameter variations or disturbances

■ system stability under operating conditions
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