EE312 (Fall 2024) S. Alghunaim

8. Analysis using Laplace transform

o the transfer function

o stability

o frequency response

o LTI systems realization

e introduction to feedback system design*
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Transfer function

the transfer function of LTIC system is the Laplace transform of its impulse response:

H(s) :[mh(r)e_”d‘r

00

h(t) is the impulse response (output due to impulse input §(¢))

= the response of an LTIC system to an exponential x(r) = e*' is
(o)
y(1) = h(t) = e* = / h(7)eS""Tdr = H(s)e"
= for LTI system with input x(z) = e*’, output is of the same form y(z) = H(s)e*’
— such input is called eigenfunction

= an alternate definition of the transfer function H(s) of an LTI system , is

output signal

H(s) =
(s) input signal

input=es?

the transfer function
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Zero-state response

taking Laplace transform of y(¢) = x(t) = h(t), we have
Y(s) = X(s)H(s)

= H(s) is called transfer function because it describes in the s domain how the
system “transfers” the excitation to the response

= if we know H(s) and X (s), then

y(1) = L7HX(s)H(5)]

the transfer function
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Transfer function of LTI differential system

Q(D)y(r) = P(D)x(1)
or

(DN + @DVt + -+ +an_1D +an)y(t)

= (boDN + 61DV 4 4 by_1D + by)x(1)

= the transfer function for this system is

_P(s)
C0(s)

= for an LTI differential system, the transfer function is simple to obtain

H(s)

the transfer function 8.4



Example 8.1

consider an LTIC system described by the equation

d?y(t) _dy(t)
az TOTar

dx(1)

+6y(t) = —= 7

+x(1)

find the transfer function and the zero-state response if the input x(f) =

the transfer function

3e 5 u(t)
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Solution: the system equation is

(D*+5D +6) y(t) = (D + 1) x(¢)

R — S——
Q(D) P(D)
therefore,
P 1
H(s) = (s) s+
O(s) s2+5s+6
since
X(s)=L[3e™u(n)] = 5
s+5
we have
3(s+1) -2 1 3

V() = XOH(S) = o T 55 70) 535 552 543

the inverse Laplace transform of this equation is

y(t) = (=2¢7% — e +3e73) u(r)

the transfer function
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Example 8.2

show that the transfer function of:
(a) an ideal delay of T seconds is e~sT
(b) an ideal differentiator is s

(c) an ideal integratoris 1/s
Solution:
(a) for an ideal delay of T seconds, the input x(¢) and output y(7) are related by
y()=x(t-T) and Y(s)=X(s)e*T
therefore,

_Y(s)  r
"Xk ¢

H(s)

the transfer function 8.7



(b) for an ideal differentiator, the input x(z) and the output y(t) are related by

v = &0

the Laplace transform of this equation is
Y(s) =sX(s) [x(07) =0 fora causal signal]

hence
_Yls) _

H(s) = X() =s

(c) for an ideal integrator with zero initial state, y (07) = 0,

t
1
y(t)=/ x(r)dr and Y(s) = -X(s)
0
therefore,

H(s) =%

the transfer function 8.8



Example 8.3

+
v(f) > C =< vc®
i(f) /’\

find the transfer function relating V¢ (is) to input voltage V (i)

the transfer function
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Solution: the Laplace circuit is

Ls R

1 +
V(Y) ) a s VC (S‘)
1(s) /‘\

the voltage across the capacitor is some proportion of the input voltage, namely the
impedance of the capacitor divided by the sum of the impedances; thus,

1/Cs

(Ls+R+ &)

Ve(s) = V(s)

solving for the transfer function, V¢ (s)/V (s), yields

Ve(s)  1/LC
V(s) 2+ %s + %

the transfer function 8.10



Example 8.4

find the transfer function, V¢ (s)/V (i), for the circuit using nodal analysis

R, R,

AMN—E2— AN —C
Vis) (t) Ls é =

wAr

recall that the admittance, Y (s) is the reciprocal of impedance:

1 I(s)
CZ(s)  V(s)

Y (s)

when writing nodal equations, it can be more convenient to use admittance

the transfer function



Solution: the sum of currents flowing from the nodes marked Vy (s) and V¢ (s) are

VL) = V() Vils) | Vi) =Vels)
R1 Ls R2

Ve(s) —Vi(s)
R, -

0

CsVe(s) + 0

rearranging and using conductances, G| = 1/R{ and G = 1/R5, we obtain,
1
G1+Ga+ Is VL(s) —G2Ve(s) =V(s)Gy
s

-GV (s)+ (Go+Cs)Ve(s) =0

solving for the transfer function, Vc (s)/V (s), yields

GG
Vel(s) [
- GGy L+C G
V(S) (G1+G2) S2+%S+ﬁ

the transfer function 8.12



Block diagrams

we can represent an LTI system using its transfer function using block diagrams

X(s) —>——

H(s)

> Y(5)

n Y(s)=X(s)H(s)

= large systems are conveniently represented by block diagrams

the transfer function

8.13



Cascade and parallel connections

Cascade interconnection

X(s)
~——>—

H(s)

Parallel interconnection

X(s)

the transfer function

W(s) Y(s) X(s) Y(s)
H,(s) = H\(s)Hy(s) [——>—=
Y(s) _ W(s) Y(s)
= = H,(s)H2(s)
X(s) X(s) W(s)
H\(s)
Y(s) X(s) Y(s)
= &> H(s) + Hy(s) [—>—=
Hy(s)
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X(s)

the transfer function

E(s)

Feedback interconnection

G(s)

Y(s) X(s)

G(s)

Y(s)

H(s)

Y(s) _ G()

1 + G(s)H(s)

X(s)  1+G(s)H(s)

8.15



Inverse systems

if H(s) is the t.f. of a system S, then the t.f. of its inverse system S; is

Hi(s) = ﬁ

= this follows from the fact that 4 () = h; (z) = 6(¢), implying H(s)H;(s) = 1

= for example, an ideal integrator and its inverse, an ideal differentiator, have
transfer functions 1/s and s, respectively, leading to H(s)H;(s) = 1

the transfer function

8.16
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BIBO Stability

given transfer function H(s) = P(s)/Q(s), then the LTI system is
= BIBO-stable if the poles of H(s) are in LHP (excluding jw-axis)

» BIBO-unstable if at least one pole of H(s) is notin LHP

Improper system: if M > N, then the system is BIBO-unstable
= this is because, using long division, we obtain H(s) = R(s) + H,(s), where
R(s) is an (M — N)th-order polynomial and H, (ss) is a proper transfer function

= for example,

s3+4s2+4s+5_ s2+25+5

H(s) = =5+
(s) s2+3s5+2 s s24+3s5+2

the term s is the transfer function of an ideal differentiator

= applying unit-step function, the output will contain an impulse (unbounded output)

stability 8.17



Asymptotic (internal) stability

P(s)
Q(s)
1. asymptotically stable if and only if all the poles of H(s) are in the LHP

if H(s) = and P(s), Q(s) have no common factors, then the LTI system is

2. marginally stable if and only if there are no poles of H(s) in the RHP and some
unrepeated poles on the imaginary axis

3. unstable if and only if either one or both of the following conditions exist:
(i) at least one pole of H(s) is in the RHP;
(ii) there are repeated poles of H(s) on the imaginary axis

stability 8.18



Example 8.5

determine the BIBO and asymptotic stability of the composite (cascade) system

Solution: the transfer function of the cascade system is

H(s) = Hi(s)Ha(s) = (sil) (i;i) - s-ll-l

thus, the system is BIBO-stable since all poles are in LHP

to determine the asymptotic stability,
» note that S; has one characteristic root at 1, and Sy also has one root at —1

= hence, the composite system has a RHP root at +1, and is asymptotically unstable

stability 8.19



Example 8.6

consider a feedback system on page 8.15 with
G(s)=K/s(s+8) and H(s)=1

determine the transfer function and BIBO stability of the system when:
(@ K=7;(b)K=16;(c) K =80

Solution: we have

u (s) = G(s) _ K/(s(s+8)) K
feedback (§) = 1+G(s)H(s) 1+K/(s(s+8)) s2+8s+K

hence

(@) Hisedback(s) = 7/(s% + 85 +7), the poles are s = —1, =7 on LHP, hence stable
(b) Hisedback(5) = 7/ (s + 85 + 16), the poles are s = —4, —4 on LHP, hence stable
(€) Hicodpack () = 7/(s% + 8s + 80), the poles are s = —4 + 8 on LHP, hence stable

stability 8.20



Matlab feedback function

we can use MATLAB feedback function to determine the transfer function in the
previous example

(@ > H=1tf(1,1); K=7; G =t£([0 0 K],[1 8 0]);
TFa = feedback(G,H)

s”T2 +8s +7

() >> H = t£(1,1); K = 16; G
TFb = feedback(G,H)
Hb =
16

s"2 + 8 s + 16

() > H = t£(1,1); K = 80; G
TFc = feedback(G,H)
He =
80

s"2 + 8 s + 80

t£([0 0 K],[1 8 01);

t£([0 0 KI,[1 8 01);

stability 8.21
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Frequency response

Frequency response: the response of an LTI system A(¢) to complex sinusoid

x(t) — Axeja)t — |Ax|ej(wt+AAx)

() = / h(1)Axe! " dr = H(jw)Ave! !

(oY)

— |H(jw)||Ax|ej(wt+AAx+LH(jw))

H(jw) is called the frequency response of the system

the amplitude of the output is |H (jw)| times the input amplitude

» the phase of the output is shifted by ZH (jw) with respect to the input phase
frequency response allows us determine the system output to any sinusoidal input

Sinusoidal input: for input cos(w? + 6) = Re(e/(@*9)) system response is:

y(t) = |H(jw)|cos[wt + 60 + LH(jw)]

frequency response 8.22



Amplitude and phase responses

Amplitude response
= |H(jw)| is the amplitude gain called amplitude response or magnitude response
= plot |[H(jw)| v w shows the amplitude gain as a function of frequency w

Phase response
= /H(jw) is the phase response

= plot ZH(jw) v w shows how the system changes the phase of input sinusoid

frequency response 8.23



Example 8.7

an LTIC system is described by the differential equation

d?y(t dy(t
dytg ) 4 3000 Z(t L2100 (1) = 2 10° (1)

(a) find its transfer function
(o) find y(r) if x(1) = 3e/7/2/40071
(c) find y(2) if x(2) = 8 cos(200xt)

frequency response

8.24



Solution:
(a) the transfer function is

2% 108

H =
() = 2330005 1 2 109

(b) the frequency response is

2 x10° B 2 x10°
(jw)2 +3000(jw) +2x 106 2x 105 — w2 + 3000w

H(jw) =
using w = 4007, we have H(j400r) = 0.5272¢ 7146 hence
y(t) — (|H(]4007T)| x 3)ej(AH(j4007r)+7r/2)ej400m — 1.582€j<400”t+0'1112)

(c) we have

y(t) = |H(j2007)| x 8 cos(200t + 2H(j2007))
= 0.8078 x 8 cos(200f — 0.8654) = 6.4625 cos(200xt — 0.8654)

frequency response 8.25



Example 8.8

find the frequency response of a system whose transfer function is

also, find the system response y(¢) if the input x(7) is
(a) cos?2t
(b) cos (10t — 50°)

Solution:
. Jo+0.1
H =
(Jw) o1t
therefore,
Vw? +0.01
|H(jw)| = YO T and /H(jw) = tan™! (ﬂ) — tan™? (ﬂ)
Vo? + 25 0.1 5

frequency response
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(a) for the input x(¢) = cos2t,w = 2, and

2)2+0.01
|H(j2)| = L =0.372
V(2)2+25
LH(j2) = tan~" () — tan™! (2) = 87.1° — 21.8° = 65.3°

thus, the system response to the input cos 2t is

(1) = 0.372 cos (2t + 65.3°)

x(1) = cos 2t y(1) = 0.372 cos(2t + 65.3°)
t—-
2

frequency response
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(b) for the input cos (107 — 50°), we have
|[H(j10)| =0.894 and <H(j10) =26°
therefore, the system response y(?) is
y(t) =0.894 cos (10 — 50° + 26°) = 0.894 cos (107 — 24°)

|H(jw)|

—

0.894 65.3°

0.372

of 2 10 o —= ol 2 110 ©—=
amplitude response shows that the system has highpass filtering characteristics

frequency response 8.28



Plotting frequency response using MATLAB

s+0.1
s+5

H(s) =

Method I: use anonymous function to define the transfer function H(s)

>> H = @(s) (s+0.1)./(s+5); omega = 0:.01:20;
>> subplot(1,2,1); plot(omega,abs(H(1j*omega)),’k-");
>> subplot(1,2,2); plot(omega,angle(H(1j*omega))*180/pi, k-");

Method IlI: use the freqs command to compute frequency response

> B =[10.1]; A = [1 5]; omega = 0:.01:20; H = freqs(B,A,omega);
>> subplot(1,2,1); plot(omega,abs(H),’k-’);

>> subplot(1,2,2); plot(omega,angle(H)*180/pi,’k-’);

both approaches generate plots that match the previous example

frequency response



Example 8.9

find the steady-state expression for v,, given that the input voltage is sinusoidal

vg = 120 cos(50007 + 30°)V

1000 ©

250 Q) l
¢ 1 uF
50 mH T

+e

<
N

frequency response
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Solution: computing the transfer function using circuit analysis:

_ Vo(s) _ 1000(s + 5000)
© Ve(s)  s2+6000s + 25 x 106

H(s)

the frequency of the voltage source is 5000rad/s and

1000(5000 + 75000)
—25 # 106 + /5000(6000) + 25 x 106

147 .
:;ﬂzﬁzﬁ_gp
j6 6 6

H(j5000) =

thus

120)vV2
= % cos (50007 + 30° — 45°)

Oss

= 20V2 cos (5000 — 15°) V

frequency response 8.31



Ideal delay frequency response

ideal delay of T seconds H(s) = e T

|H(jw)|=1 and ‘H(jw)=-wT

|H(jo)| <H(jw)

= if the input is cos wt, the output is cos w(t — T)
» the amplitude response (gain) is unity for all frequencies

» the phase response is linearly proportional to the frequency w with a slope —T'

frequency response 8.32



Ideal differentiator frequency response
ideal differentiator H(s) = s:
. g
|H(jw)|=w and /H(jw)= 5

|H(jw)| / H(jw)

/21

i = o o=

= for input cos wt, the output is w cos[wt + (7/2)] = —w sin wt

the amplitude response (gain) increases linearly with frequency w

the output sinusoid undergoes a phase shift 77/2 with respect to the input cos wt

since |H(jw)| = w, higher-frequency components are magnified

= a differentiator can increase the noise is a signal, which is undesirable

frequency response 8.33



Ideal integrator frequency response
an ideal integrator H(s) = 1:
. 1 ) n
|H(jw)|=— and ‘H(jw)=--
w 2

[H(jow)| )
LH(jw)

0]
/2
b P /2

= if the input is cos wt, the output is (1/w) sin wt = (1/w) cos[wt — (7/2)]
= amplitude response is proportional to 1/w, and phase response is constant — /2

= because |H(jw)| = 1/w, the ideal integrator suppresses higher-frequency
components and enhances lower-frequency components with w

= rapidly varying noise signals are suppressed (smoothed out) by an integrator

frequency response 8.34



Steady-state response to causal sinusoidal inputs

for the input x(7) = e/“’u(t), we have (assume distinct roots)
P(s) _ P(s)

Y(s)=X(s)H(s) = X(S)Q(s) TG (5=A2) - (s—An) (5 — jw)

:z”: ki H(jw)
i=1

s=4; s—-jw
for some constants k;; taking inverse Laplace transform:
n
v = Y kieWu(n) +  H(jw)e " u(r)

i=1 v
steady-state component yss ()

transient component yy, ()

= for stable system, the characteristic mode terms elit goes to zero
» for a causal sinusoidal input cos(wt)u(t), the steady-state response is

yss(1) = |H(jw)| cos|wr + LH(jw)]u(r)

frequency response
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System realization

system realization is the process of putting together system components to form an
overall system with a desired transfer function

Transfer function realization (M = Nth-order)

()SN +b1SN_1 +---+by_15+byn
sN +a;sN-14+...+any_i1s+an

H(s) =2 8.1)

= can be realized by using integrators or differentiators with adders and multipliers

= in frequency domain realization, the integrator can be represented as 1/s:

() ¥ = Jyx(nd(m) XGs) 1 ¥es) = 1x(s5)

—— f - —— 5 ——

(a) (b)

= integrators can be modeled using op-amp circuits

LTI systems realization 8.36



Example: consider the specific case:

b b b:
b0S3+b1S2+b2S+b3 _ b0+T‘1+s_§+s_§

s3+ays?+ass+as 1+94 494 %

H(s) =

to use integrators, we express H(s) as

by by  bs 1
H(s) = bo+?+s—2+s—3)(1+%—a?a_3)

Hi(s) Ho(s)

we can realize H(s) as a cascade of H1 (s) followed by Ho (s)

LTI systems realization 8.37



= we have
by by b
W@):Hﬂgxu)z@m+i+—§+§)xu)
S R S

signal W (s) can be obtained by successive integration of the input x ()
= we have Y (s) = Hyo(s)W(s), hence:

W(s) = (1+ﬂ+a—§+a—§’)Y(s)
s S s
rearranging
szmg{ﬂ+%+%ﬁm
s S s

to obtain Y (s), we subtract a1 Y (s)/s, a2Y (s)/s2, and azY (s) /s> from W(s)

successive integration of Y (is) yields Y (s)/s, Y (s)/s%, and Y (s)/s3

LTI systems realization
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putting things together, Y (s) can be synthesized (realized) as

left-half section represents H () and the right-half is Hs(s)

LTI systems realization

8.39



Direct form |

the direct form | (DFI) realization to equation (8.1) for any value of N

this realization requires 2N integrators to realize an Nth-order transfer function

LTI systems realization
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Canonic direct form Il

we can also realize H(s) where Ho (s) is followed by H1 ()

a canonic realization has N integrators, which equals order of system

LTI systems realization

8.41



Example 8.10

find the canonic direct form realization of the following transfer functions:
5

s+ 7
s

s+7
s+5
s+ 7
4s + 28
s2+6s+5

LTI systems realization
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Solution:

(a) the transfer function is of the first order (N = 1); therefore, we need only one
integrator for its realization; the feedback and feedforward coefficients are

61127 and b():O, b1=5

(b) wehavea; =7,bg=1,and by =0
X(s)

LTI systems realization 8.43



(c) here H(s) is a first-order transfer function with a; = 7and bg = 1,b, =5

X(s) s @ Y(s)

-7 5

(d) this is a second-order system with by = 0, b1 = 4, by = 28,a; = 6, and as = 5;
X(s)

LTI systems realization 8.44



Cascade and parallel realizations

an Nth-order transfer function H (s) can be realized as a cascade (series) or parallel
form of these N first-order transfer functions

Example:

4s + 28

H ==
(s) 524+ 6s+5

we can express H(s) as

H(s) = 45+ 28 (4s+28)( 1 )

+D)(s+5) | s+1 )\s+5
S——
Hi(s) Hs(s)

we can also express H (s) as a sum of partial fractions as

4s + 28 6 2
H = = —
(s) (s+1)(s+5) s+1 s+5
SN—~—— =

H3z(s)  Ha(s)

LTI systems realization 8.45



these equations give us the option of realizing H(s) as a cascade of H;(s) and
Hs (s) or aparallel of H3(s) and Hy(s)

X) | 45 + 28 Y(s) X(s)
*~> e *~——>1

s+ 1 s+5

(a) (b)

= each of the first-order transfer functions can be implemented by using canonic
direct realizations, discussed earlier

= many different ways to realize a system (e.g., different ways of grouping the
factors)

LTI systems realization

8.46



Realizations of complex conjugate poles

the complex poles in H(s) should be realized as a second-order (quadratic) factor
because we cannot implement multiplication by complex numbers

Example:

10s + 50 2 142 1-j2
(s+3)(s2+4s+13) s+3 s+2-j3 s+2+/3

H(s) =

to realize the above, we can create a cascade realization from H(s):

Hes) - (20 545
)= s+3)\s2+4s5+13

or, we can create a parallel realization from H(s) expressed in sum form as

2 25 — 8
s+3  s2+4s+13

H(s) =

LTI systems realization



Example 8.11

determine the parallel realization with least amount of integrators of

7s% +37s + 51 5 2 3

H(s) = (s+2)(s+3)2 s+2+s+3_ (s+3)2

Solution: observe that the terms 1/(s + 3) and 1/(s + 3)? can be realized with a
cascade of two subsystems, each having a transfer function 1/(s + 3)

| 5

s+2
X * Y(s)
(5) s
> s

S}

each of the three transfer functions can realized as in the previous example

LTI systems realization



Transposed realization

transposed realization is equivalent t a given realization, generated as follows
1. reverse all the arrow directions without changing the scalar multiplier values
2. replace pickoff nodes by adders and vice versa
3. replace the input X (s) with the output Y (s) and vice versa

Y(s) @ by X(s) X(s) by

Y(s)

by by

(a) (b)

fig. (b) is fig. (a) reoriented in the conventional form

LTI systems realization
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Example 8.12

find the transpose canonic direct realizations of
s+95

s+ 7
4s + 28
s2+6s5+5

LTI systems realization
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Solution:

(a) here, N =1witha, =7,bg=1,b1 =

X(s) Y(s)

(b) in this case, N = 2 with by = 0,b1 =4,by =28,a1 =6,a2 =5

Y(s)
e

X(s)

4 > 6
28 \Ej -5

LTI systems realization 8.51
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System design

systems aim to produce a specific output y(¢) for an input x(t)

x(1)
——>——

G(s)

(1)
o> e

component replacement, or environment

open-loop systems should yield the desired output but may change due to aging,

= these variations can alter the output, requiring corrections at the input

= the needed input correction is the difference between actual and desired output

= feedback of the output or its function to the input may counteract variations

introduction to feedback system design*

8.52



x(1)

Feedback

e(t)

G(s)

= address problems from disturbances like noise signals or environmental changes

= aim to meet objectives within tolerances adapting to system changes

= allows supervision and self-correction against parameter variations/disturbances

introduction to feedback system design*
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Example: negative feedback amplifier

x(1) e() y(®)

H

G 10,000

T: = = 1
1+GH 1+100 990

= if G changes to 20, 000, the new gain is:

20,000
T —

= T+200 0 9

= shows reduced sensitivity to forward gain G variations

changing G by 100% changes T by 0.5%

introduction to feedback system design*

forward amplifier gain G = 10, 000, with H = 0.01 feedback, gives:

8.54



Example: positive feedback amplifier

T = G
1-GH

a for G = 10,000 and H = 0.9 x 1074, gain T is:

B 10, 000
T 1-0.9(10%) (1074)

= with G = 11, 000, new gain is:

T =100, 000

11,000

T = = 1,100, 000
1-0.9(11,000) (104

= highlights sensitivity to forward gain G changes

» positive feedback increases system gain but also sensitivity to parameter
changes, leading to potential instability

» for G = 111,111, GH = 1 results in T = oo and system instability

introduction to feedback system design* 8.55



Automatic position system

Output

Input
potentiometer

potentiometer

Hr

9,

de

T amplifier

o

controls the angular position of heavy objects like tracking antennas or gun mounts
= input 6; is the desired angular position
= actual position 6, measured by a potentiometer
» difference 6; — 6, amplified and applied to motor input
= motor stops if 8; — 8, = 0, moves if 6, # 6;

system controls remote object’s angular position by setting input potentiometer
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Block diagram of automatic position system

Amplifier Motor and load

0; 6,
@ K G(s)

= amplifier gain is K (adjustable)

= motor transfer function G () relates output angle 8,, to input voltage

KG(s)

= system transfer function T'(s) = THRG(s)

= next, we examine behavior for step and ramp inputs
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Step response

= step input indicates instantaneous angle change
= we want to assess transient time to reach desired angle
= output 8, (¢) found for input 6; (1) = u(t)

= step input test reveals system’s performance under various conditions
for step input 0; (1) = u(t), ©;(s) = 1,

_ KG(s)
© () = STTKGH)]

assuming G (s) = m, investigate system behavior for different K values

K
s(s+8) K

®0(s): = 2
K +8s+K
S|:1+m] S(S S )
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we have
0o(t)=(1-Ze"+2e ™ u(r), K=17
0, (1) = [1 + Y574 cos (81 + 153°)] (1), K =80
response for K = 80 reaches final position faster but with high overshoot/oscillations

1.2

for K = 80
= percent overshoot (PO) is 21%; peak time t,, = 0.393, rise time ¢, = 0.175

= steady-state error is zero, settling time #; ~ 1 second
= a good system has small overshoot, 7, t5, and steady-state error
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to avoid oscillations in an automatic position system, choose real characteristic roots
= characteristic polynomial is 52 + 8s + K

= for K > 16, roots are complex; for K < 16, roots are real

» fastest response without oscillations at K = 16

= systemis

— critically damped at K = 16
— underdamped if K > 16
— overdamped if K < 16

for K = 16,
16 16
@0 = =
) = T v85510) ~ 3G +d)?
11 4
s s+4 (s+4)2
0o(t) = [1 - (4 + L)e ] u(r)
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Ramp response

response of to a ramp input 6; (¢) = tu(t) or ®;(s) = Siz when K = 80

80 01 1 01(s-2)

(€] = = —_t
o(5) s2(s2 + 8s + 80) s 52 s2+85+80

0o(1) = [-0.1+1+ £e™ cos(81 +36.87°)| u(t)

3} g

Desired \

Actual

t——

response to a ramp input 6;(¢) = ru(t) with a steady-state error
» steady-state error ¢, = 0.1 radian may be tolerable
= Zero error requires compensator addition
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Matlab example

using feedback system G (s) = m—% and H(s) = 1, determine step response for
K =17,16,80

= code for unit step response

H=1tf(1,1); K=7; G = tf([K],conv([1 0],[1 8])); Ha = feedback(G,H);
H=t£f(1,1); K = 16; G = tf([K],conv([1 0],[1 8])); Hb = feedback(G,H);
H=tf(1,1); K = 80; G = tf([K],conv([1 0],[1 8])); Hc = feedback(G,H);
clf; step(Ha,’k-’,Hb,’k--’,Hc,’k-.");

legend(’K = 7°,°K = 16°,°K = 80’,’Location’,’best’);

= code for unit ramp response when K = 80

t = 0:.001:1.5; Hd = series(Hc,tf([1],[1 01));
step(Hd,’k-’,t); title(’Unit Ramp Response’);
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Design specification

= transient specifications: overshoot, rise time, settling time for step input
= steady-state error: difference between desired and actual response in steady state

sensitivity to system parameter variations or disturbances

= system stability under operating conditions
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