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The Laplace transform

the Laplace transform of x(t) is defined as

X(s) =[mx(t)e_‘”dt

00

= variable s can be complex
= known as the bilateral or two-sided Laplace transform
» x(7) is called the inverse Laplace transform of X (s)

= we use x(f) & X(s) to denote a Laplace transform pair

Region of convergence (ROC)
= set of values of s where X (s) exists is called the region of convergence (ROC)

= for a finite-duration, integrable signal x ¢ (), the ROC is the entire s-plane

the Laplace transform 7.2



Example 7.1

find the Laplace transform and the ROC for
(@ x(1) = e “u(r)
(b) x(t) = —e"u(-t)

Solution:
(a)
X(S) = /Ooe_utu(t)e_‘wd[ = /Ooe_(‘v+u)tdt — 1 e—(.\‘+a)t
- 0

o0 s+a 0

for a complex number z = @ + j8

e—zt — e—(aﬂﬁ)t — e—ate—jﬁt

since |e /B! =1,ast — co,e ¥ — Qonlyifa > 0,and e ¥ — wifa <0

the Laplace transform



we conclude that

lim e

t—00

—(s+a)t _ 0 Re(s + a) >0
"] o Re(s+a)<0

hence,
L
X(s)=—— if Res>-a
s+a

the ROCis Res > —a
(b)

o0 0
X(s):/ —e_‘”u(—t)e_”dtz—/ e~ S* a1t gy

o0 (o)

1
s+a

|

e—(s+a)t

—00

the Laplace transform

s+a

Res < —a
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we see that e u(t) and —e~“"u(—1) have identical X (s) but different ROC

Im fc+jo

(b)
= X () can more than one inverse transform, depending on the ROC

= if we consider causal signals only, then there is a unique inverse transform of
X(s) = 1/(s +a), namely, e"*"u(r) and there is no need to worry about ROC

the Laplace transform 7.5



Unilateral Laplace transform

the unilateral Laplace transform X () of a signal x(z) is
X(s) = / x(t)e 'dt (7.1)
o

= the 07 in the lower limit means we can start the integration right before 0 as long
as the integral converges (e.g., to include impulse function)

= for a given X(s), there is a unique unilateral inverse transform x(¢)
Linearity: if
x1(t) = X1(s) and x3(t) = X>(s)
then

alxl(t) + GQXQ(I) — 611X1(S) + GQXQ(S)

the Laplace transform 7.6



Existence

the unilateral Laplace transform exists if there exists a real o such that:
/ [x(t)e "] dt < oo
o

w if [x(2)| £ Me70" for some M and o, then X () exists for o > oy

t

. e’ grows at a rate faster than ¢“°’; hence not Laplace-transformable

Abscissa of convergence: the smallest value of o-, denoted by o, for which the
integral is finite, is called the abscissa of convergence

= the ROC of X(s) is Res > oy

= the abscissa of convergence for e™# u(t) is —a (ROC is Re s > —a)

the Laplace transform
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Inverse Laplace transform

the inverse Laplace transform of X (s) is

1 c+joo
x(t) = —/ X(s)e ' ds

27 _joo

= C is a constant chosen to ensure convergence
= integration in the complex plane is beyond the scope of this course

= we will use known Laplace transform pairs to find the inverse transform
Notation: the Laplace and inverse Laplace operations are denoted by:
X(s)=L[x()] and x(t) = L7[X(s)]
note that

LHL[x(D]}=x() and L{LT'[X(s)]} = X(s)

the Laplace transform



Common Laplace transform pairs

x(1)

X(s)

o(1)

u(t)

tu(r)

t"u(t)
eu(r)
teu(t)
cos(bt)u(t)

sin(bt)u(t)

3 °’M|>—lh|»~ —

[}
3
¥
ht

(s—2)?

52+ b2

52 + b2

(see Laplace table for more pairs)

the Laplace transform
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Finding inverse Laplace of rational functions

if X(s) is as a rational function, then

_ P(S) _ b()SM + b1SM71 +---+bpy_15+by

S 0(s)  (s—p(s—pa2)...(s—pN)

X(s)

= X(s) is called properif M < N and improperit M > N
= zeros of X(s) are values of s for which X(s) =0 (e.g., P(s) =0)
= poles of X () are values of s for which X(s) — o (e.g., Q(s) = 0)

= we can obtain x () from known pairs given the partial-fraction expansion of X (s),

which expresses X (s) as a sum of fractions with simpler denominator

= the ROC is the region of s-plane to the right of all the finite poles of X ()

the Laplace transform
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Partial fraction expansion

Distinct roots: if roots p; of Q(s) are distinct, then

P(S) k1 k2 kn
= = + + -+
Q(s) s—p1 s—p2 S = Pn

X(s)

Repeated roots: if the root p,, = p of Q(s) = 0, is repeated r times, then

P(S) ]21 ]22 k,-
X(s) = = —~ - +ot —
O =06 "G-p G- p2 G-py

kl k2 kn—r
+ + o —
S—=Pp1 §—= P2 S = Pn-r

= only a proper rational function can be expanded as a sum of partial fractions

= improper X (s) is separated it into a sum of a polynomial in s and a proper function

the Laplace transform 7.1



Example 7.2

find the inverse unilateral Laplace transforms of the following Laplace transforms

7s—6
(@) X(s) = 2S— (real distinct roots)
s2—5—6
252 +5
= i M =
(b) X(s) T 13540 (improper N)
6 34
(c) X(s) = m (complex distinct roots)
8s+ 10
d)y X(s)= St (repeated roots)

(s+1)(s+2)3

the Laplace transform
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Solution: we expand these functions into partial fractions

(a)

- k k
X()=—2-0 __ Kk K
(s+2)(s—=3) s+2 s-3
we have
7s —6 -14 -6
k = — :—:4
! (5-3)|,.y -2-3
o Ts=6 216
T (5+2(s—3V|,.y  3+2
therefore,
7s—6 4 3
X(s) = —2

= +
(s+2)(s=3) s+2 s-3
using the Laplace table (pair 5), we have

4 3
s+2 s-3

x(r)=L"1 ( ) = (46_2t + 363t) u(t)

the Laplace transform 713



(b) X(s) is an improper function with M = N; we can express X (s) as:

2S2+5 2S2+5 k1 k2
X(s) = = =2+ +
s2+35+2  (s+1)(s+2) s+1  s+2
where
. 252 +5 245
YT (s +2)| ., 142
22
ky = s“+5 _ 8+5 __13
LA+ (s +2) o —2+1
therefore,
1
X =24 113
s+1 s+2

from Laplace table (pair 2 and 5), we have

x(t) =258(t) + (7" = 13e™*) u(r)

the Laplace transform 7.14



6(s +34) B 6(s + 34)
s(s2+10s+34)  s(s+5-73)(s+5+j3)
k1 ko ks
=—+ — + ,
s s+5—-j3 s+5+4+j3

X(s) =

we have k1 = 6 and k2 and &, of the conjugate terms must be conjugate:

ky = =3+ j4="5e/1209 k=571

hence

5ei126.9°  5,=j126.9°

X(s)=—+ —+ .
s §+5—j3 s+5+j3

from Laplace table (pairs 2 and 10b), we obtain

x(t) = [6+ 10" cos (3t +126.9°) | u(t)

the Laplace transform
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(c) Alternative approach: to avoid dealing with complex numbers, we express X (s):

6(s+3) ki As+B

X(s) = — 2 "% _a4rs

)= T Z+105+30) ~ 5 T 52+ 105434
6 As+ B

= -4+ -
s s2+10s+34
where k1 = 6 is already determined from before

to find A, we multiply both sides by s and then let s — co:
0=6+A = A=-6

therefore,

6(s +34) _6+ —-6s+B

s(s2+10s+34) s s2+10s+34

to find B, we let s be any convenient value, say, s = 1, to obtain

21 -
—0=6+ﬁ=>3:—54
45 45

the Laplace transform 7.16



hence,

6 —6s — 54
X(s) =~ 4 - "
(s) s s2+10s+34

using table (pairs 2 and 10c) with

A=—-6, B=-54,a=5,¢c=34, b=VNc—-a?2=3

we have
A2+ B2 - 2AB Aa-B
r:\/ CXF A 10 f=tan ! CETE 2 126.9°
c—-a AVc - a?

therefore,

x(1) = [6+10e™" cos (3t +126.9°) | u(1)

the Laplace transform 717



(d) for repeated roots, we expand as

X(s) = 8s + 10 _ k1 + aop + ai + as
s+ 1D)(s+2)3  s+1 0 (s+2)3  (s+2)2  s+2
where
8s+ 10
k= ———— =2
T (s +2)3 ],
- 8s+10 _6
07 s+ DG,
d 8s+ 10
a) = -2
ds (s+1)(,s,-k2)’3’ o
_ d2 8s+10 9
92=3 G+DG+27 [ _,
therefore,
2 6 2 2
X(s) =

+ — a—
s+1 (s+2)3 (s+2)2 s+2

the Laplace transform
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(d) Alternative approach: in this method, the simpler coefficients k1 and ag are
determined by the Heaviside “cover-up” procedure;
to determine the remaining coefficients, we use the clearing-fraction method:
8s+10 2 6 a as

= + + +
(s+1)(s+2)2 s+1 (s+2)2 (s+2)2 s+2

if we multiply both sides by s and then let s — oo, we eliminate a;:

0=2+a2=>a2=—2

therefore,
8s+10 _ 2 6 ai 2

GADG+2° s+1 (5+23 (5422 s+2

a1 can be determined by setting s equal to any convenient value, say, s = 0:

Q=2+3+4 _1=4=-2
therefore, X(s) = v+1 + (Hz)g - W - @, and from table, we have

x(1) = [2e7" + (3° =2t = 2) e | u(r)

the Laplace transform 719



Example 7.3: improper

If X(s) = P(s)/Q(s) is improper, where the order of P(s) is greater than or equal to
the order of Q(s), then P(s) must be divided by Q(ss) successively until the result
has a remainder whose numerator is of order less than its denominator

Example
3 +252 46547
s2+5+5
we must perform the indicated division until we obtain a remainder whose numerator
is of order less than its denominator; hence,

X(s) =

X(s) +1+ 2
s)=s R
( sZ+5+5
taking the inverse Laplace transform:
dé(t) 1 2
1) = +0(+Z 7 | ——
*(®) ® s2+5+5

the inverse transform of 2/(s2 +5+ 5) can be found using partial-fraction expansion

the Laplace transform 7.20



Partial fraction expansion via MATLAB

the MATLAB residue command can be used to find the partial fraction expansion

Example: use MATLAB and Laplace table, to determine the inverse Laplace
transform of each of the following functions:

252 +5
X = —_—
@ Xa(s) 52 +3s+2

>> num = [2 0 5]; den = [1 3 2];
>> [r, p, k] = residue(num,den)

r = -13
7
p=-2
-1
k=2
hence

Xo(s)==-13/(s+2)+7/(s+1)+2
xa(t) = (=132 + Te™") u(r) +26(1)

the Laplace transform



252 +Ts+4

(b) Xp(s) = GiDGr2)e

>> num = [2 7 4]; den = [conv([1 1],conv([1 2],[1 21))1;
>> [r, p, k] = residue(num,den)
r =3

p=-2

-2

-1

k =[]

hence,
Xp(s)=3/(s+2)+2/(s+2)2-1/(s+1)

xp(1) = (372 +2te™ — ") u(r)

the Laplace transform
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8s2+21s+19
(s+2)(s2+s5+7)

() Xc(s) =

>> num = [8 21 19]; den = [conv([1 2],[1 1 71)];
>> [r, p, k]l= residue(num,den)

r = 3.5000-0.48113i
3.5000+0.481131i
1.0000

p = -0.5000+2.5981i
-0.5000-2.59811i

>> ang = angle(r), mag = abs(r)
ang = -0.13661
0.13661
0
mag = 3.5329
3.5329
1.0000
~j0.13661 j0.13661
Xe(9) =55+ 3&?6?5?5]'2.5981 + 1'531232.5981

xo(1) = [e7 +1.7665¢ 75" cos(2.5981t — 0.1366) | u(r)

the Laplace transform 7.23



Finding the Laplace transform using Matlab

MATLAB’s symbolic math toolbox can be used to find the Laplace transform

Examples
(a) the direct unilateral Laplace transform of x, (¢) = sin(at) + cos(bt)
>> syms a b t; x_a = sin(a*t)+cos(b*t);
>> X_a = laplace(x_a);
X_,a=a/(a"2 + s72) + s/(b"2 + 872)
we express in standard rational form

>> X_a = collect(X_a)
X_a = (a"2*s+a*b”2+a*s"2+573)/(s74+(a"2 + b"2)*s"2+a"2%b"2)

(b) the inverse unilateral Laplace transform of X, (s) = as®/(s* + b?)

>> syms a b s; X_b = (axs"2)/(s"2+b"2);
>> x_b = ilaplace(X_b)
x_b = axdirac(t) - axbxsin(b*t)

the Laplace transform

7.24



Outline

e the Laplace transform
o properties of the Laplace transform
o solving differential equations

e circuit analysis using Laplace transform



Shifting

Time-shifting: if x(1) & X(s) thenfortg > 0,
x(t—1y) & X(s)e™s"
= here x(7) is causal, so x(¢ — ty) starts at t = t( (we often avoid this ambiguity by
considering x(#)u(?))

= holds only for tg > 0; if g < 0, the signal x(¢ — #y) may not be causal

Frequency-shifting: if x(1) < X (s) then

x(t)e*" = X (s - s9)

properties of the Laplace transform 7.25



Example 7.4

find the Laplace transform of x(¢) shown below
x(1)

Solution: we can express the signal as:
x() =@ —D[u(t-1) —u(t —2)] + [u(t —2) —u(t — 4)]
=(t-Du@-1)—-¢-Du(t-2)+u(t-2)—u(t—4)
we can rearrange the second term as
(t-Du(t-2)=0t-2+Du(t-2)=((-2)u(t-2)+u(t-2)
hence,

x()=-Dut—-1)—(t—-2)u(t—2) —u(t—4)

properties of the Laplace transform 7.26



applying the time-shifting property to tu(t) &= 1/s? yields

1 1
(t-Du(t-1) = —e* and (t-2u(t-2) &= —e”
s s

also
1 1 —4s
u(t) = - and u(t-4) < -e
s s
therefore,
1 1 1
X(s) = e - —Qe_2s ——
s s s

properties of the Laplace transform

2s
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Example 7.5

find the inverse Laplace transform of

s+3+5e2s
X(s)= —2—2%
©) = G306+
Solution: we have
s+3 He~2s
X = +
©) = GiD6+9 T GG+
X1 (s) Xo(s)e™2s
and
s+3 2 1
X = = —
1) (s+D(s+2) s+1 s+2
5 5 5
Xa(s) =

(s+1)(s+2) TS5+l s+2

properties of the Laplace transform
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therefore,

x1(1) = (27" - 6_2’) u(t)
xo(t) =5 (e —e ) u(t)

also, because
X(s) = X1(5) + Xo(s)e™%
we can write
x(1) = x1 (1) +x2(2 = 2)

= (2¢7" —e ) u(t) +5 [e_(t_Q) —e 20| y(1 - 2)

properties of the Laplace transform
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Differentiation

Time-differentiation: if x(1) &< X(s) then

dx(t
10 — sX(s)—x(07)
dt
repeated differentiation yields
d"x(t
d);(, ) — S"X(s) _ S"_lx (0—) _ Sn_2)'c (0—) . _x(n_1) (0_)

=s"X(s) - Z sk x =D (07)

k=1
Frequency-differentiation: if x(1) <= X (s) then

"x(t) = (—1)”%X(s)

properties of the Laplace transform
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Example 7.6

find the Laplace transform of x(t) using Laplace table and the time-differentiation and
time-shifting properties

x(1)
2

0] 2 3 >

Solution: the derivative at a discontinuity is an impulse equal to the jump amount

&x
dx dr®

properties of the Laplace transform 7.31



therefore,

d*x(t)
dr?

=6(t) —36(t—2)+26(t—3)
the Laplace transform of this equation yields

d’x(1)
£ ( dr?

) = L[6(1) = 36(t —2) +26(1 — 3)]

using the time-differentiation and time-shifting properties, and the facts that
x(07)=x(07) =0,and 6(t) < 1, we obtain

$2X(s) —0-0=1-3e"2 +2¢73

thus,

1 -2 -3
X(s):S—2(1—3e S+ 2e7)

properties of the Laplace transform 7.32



Integration

Time-integration: if x(1) < X (s) then

/tx(T)dT — X(s)
0 N

and

x(1)dr = .

00

/" X(s) .\ /_Z;x(‘r)d‘r
_ S

Frequency-integration: if x(t) &< X(s) then

M — /OOX(u)du

t

properties of the Laplace transform 7.33



Scaling and complex conjugation

Time-scaling: if x(1) < X (s), thenfora > 0
1 N
x(at) = -X (—)
a \a
= compression of x(7) by a factor a causes expansion of X (s)
= expansion x () causes compression of X (s) by the same factor
Complex conjugation: if x(f) < X(s), then

x*(1) = X*(s)

properties of the Laplace transform 7.34



Convolution

let

x1(t) = Xi1(s) and x5(t) = X2(s)

Time-convolution

x1(1) xx2(1) &= X1(5)X2(s)

Frequency-convolution

1 (Dxa(t) = % [X1(s) * Xa(s)]

properties of the Laplace transform 7.35



Example 7.7

use the time-convolution property of the Laplace transform to determine

c(t) = e®u(t) = e’ u(r)

Solution: using time-convolution property, we have

1 1 1 1
Cls) = (s—a)(s—D) T a—b [s—a_s—b]

the inverse transform of this equation yields

1

c(t):a—b

(eat _ eht) u(t)

properties of the Laplace transform
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Initial and final value theorems

Initial value theorem
x(0*) = lim sX(s)
§—00

= applies only if X () is strictly proper (M < N)

» for M > N, limg_,o, sX () does not exist in such a case, we must express X (i)
as a polynomial in s plus a strictly proper fraction, where M < N

Final value theorem
lim x(¢) = lim s X (s)
t—00 s—0

applies only if the poles of X (s) are in the LHP (including s = 0)

properties of the Laplace transform 7.37



Example 7.8

determine the initial and final values of y(t) if

10(2s + 3) s3+3s2+5+1

Y(5) = ———— = =
3) ¥(s) s(s2+2s+5) (0) ¥(s) s2+25+1
Solution:
(a) directly applying the theorems:

10(2s5 + 3)
y(0+) = hm SY(S) = hm m =
10(2s + 3)

= lim s¥(s) = lim —— o =
y(eo) = lim sY(s) = I e 557 5)

(o) here M > N, to use use the I.V.T, we write

2s
Y(s) = (s+1)—m
the inverse transform of s + 1 is §(¢) + §(¢), which are zero at ¢ = 0*; hence:
y(0%) = lim _2 =-2 y(c0) = lim sY(s) =0
s—o0 52+ 25 +1 ’ 5—0

properties of the Laplace transform
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Solving differential equations

Laplace transform is a powerful tool to analyze linear systems
= differential equations can be transformed into algebraic equations

= allows us to solve differential equations knowing only initial conditions at 0~
using differential equations, we have to also know the initial conditions at 0*

Example: use the Laplace transform to solve the linear differential equation

d?y(t dy(t
dytg ) +5_yd(t) +6y(t) =

dx(1)
dt

+ x(1)

with initial conditions y (07) = 2and ¥ (07) = 1 and the input x(¢) = e * u(r)

solving differential equations 7.39



Solution:

let y(t) & Y (s), then

d);—(tt) — sY(s) —y(07) =sY(s)—2

d*y(1) = 5%Y(s) —sy (07) =y (07) = s%Y(s) — 25 — 1

dt?

moreover, for x(¢) = e 4 u(t)

! and dx(t)(=>sX(s)—x(0_)=L—O= >

X(s) = 4 dt s+4 s+4

+

s
taking the Laplace transform of the diff. equation:

1
s+4

[s2y(s) - 25— 1] +5[sY(s) — 2] +6Y(s) = s-i-Lél +

solving differential equations
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rearranging, we obtain

9 s+1
+55+6)Y(s)—(2s+11) =
(s s+6)Y(s) - (2s ) 1
therefore,
Y(s) = 25 + 11 s+1 252 +20s +45

+ =
245546  (s2+55+6)(s+4) (s+2)(s+3)(s+4)
expanding the right-hand side into partial fractions:

13/2 3 3/2
Y(s) = / - - /
s+2 s+3 s+4

taking inverse Laplace transform:

13 3
y(t) = ?e_zt - 373 — 56_4’ u(t)

solving differential equations 7.41



Zero-input and zero-state components

= the initial conditions term in the response give rise to the zero-input response

= the input term give rise to the zero-state response

Example: in the previous example, we have
25 + 11 s+1

Y = +
(s) s2+554+6  (s+4)(s2+55+6)
N———
initial conditions term input term
7 5 -1/2 2 3/2

s+2 s+3 s+2  s+3 s+4

taking the inverse transform:

: 1
y(0) = (7 —5e) u(r) + (2 207 _ 3) u(t)

ZIR
ZSR

solving differential equations 7.42



Example 7.9

y(0)

10V — =

/1

the switch is in the closed position for a long time before t = 0, when it is opened
instantaneously; find the inductor current y(z) forz > 0

Solution: when the switch is in the closed position (for a long time), we have
y(07)=2andvc(07) =10

solving differential equations
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when the switch is opened (¢ > 0), we get the circuit

1H 20

y(0)

10u(r) . /‘\ ve(®)
<F

the voltage source is represented by a unit step 10u(¢) after opening the switch

the loop equation of the circuit is

d);(tt) +2y(t) +5 [t y(t)dt = 10u(t)

00

solving differential equations
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if y(t) &= Y (s) then

d}c)l_(tt) — sY(s) —y(07) =sY(s) -2
and
! O S (1)dr
/ y(1)dr = Yis) + f_‘x’ ys( )

note that (1/C) f_(i; y(t)dt = vc(07) and thus:

.
[ YT = Cre (07) = £(10) =2

0

hence

/ty(‘l')cl‘z'<=>&+g

o s K

solving differential equations 7.45



using these results, the Laplace transform the diff. equation is

5Y(s)+E_E

sY(s) —2+2Y(s) +

N N N

thus

2s

Y(5) = 0o
(s) 5242545

to find the inverse Laplace transform, we use pair 10c in Laplace table with values
A=2,B=0,a=1,andc = 5:

2 2
r:wlz():\/g, b=Vc-a%2=2 and 9=tan_1(z)=26.6°

therefore,

y(t) = Voe™ cos (2t + 26.6°) u(r)

solving differential equations
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Laplace representation of basic electric elements
Resistor
v(t) = Ri(t) & V(s) =RI(s)

Inductor

V(1) = LL — V(s) = LsI(s) - Li (07)

i(r) I(s) 1(s)

+ + +
Ls
0 L V(s) V(s) %’—" <+ i07)
s
Li(07)

circuit analysis using Laplace transform
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Capacitor

dv(t 1 v (0™
i(t):CL V(s) I( )+L
dt
N i(1) ) 1(s) N 1(s)
1 1
Cs
+
V() CI= w0 V(s) oy @ &=

Impedance: the impedance of an elementis Z = V(s)/I(s)

» the impedance of a resistorof Ris Z = R
» the impedance of an inductor of L is Z = Ls

» the impedance of a capacitor Cis Z = 1/Cs
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Kirchhoff’s laws

Time domain

N M
D vi()=0 and > ix(t)=0
k=1 k=1

w vi(1)(k=1,2,...,N) are the voltages across N elements in a loop

w i (1)(k=1,2,..., M) are the M currents entering a node

Laplace domain

N M
D Vi(s)=0 and > Ii(s)=0
k=1 k=1

» Vi (s) and Vi (s) are the Laplace transforms of v (7) and iy ()
= we can treat the network as if it consisted of the “resistances” R, Ls, 1/Cs
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Example

10u(r)

the initial conditions y (07) = 2and v¢ (07) = 10

loop voltage is (10/s) + 2 — (10/s) = 2, and loop impedance is (s + 2 + (5/s));
hence,
2 2s

Y = =
(s) s+2+5/s s2+25+5

which matches our earlier result in slide 7.46
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Example 7.10

1H 30

10u(?) i) T 1F

find the loop current i(¢) in the circuit shown if all the initial conditions are zero

Solution: we first, we represent the circuit in the frequency domain:

s 3

lhﬁ 1(s) ,‘\
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total impedance in the loop is

2 5243542

Z(s)=s+3+—-=
s s
the input voltage is V(s) = 10/s; therefore:
V(s) 10
I = =
() Z(s) s2+35+2

3 10
T (s+1)(s+2)
10 10
s+l s+2

taking the inverse transform, we arrive at

i(r) =10 (e — e ) u(r)
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Example 7.11

+ve — “I(’) 1Q
—— W ve(0) = 16
E v = ¥,(0) = 4
20V — %Q § yy(0) % H
t=0

the switch in the circuit is in the closed position for a long time before ¢ = 0, when it is
opened instantaneously; find the currents y1 (¢) and yo(z) fort > 0
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Solution: by inspection, the initial conditions are v¢ (07) = 16 and y5 (07) = 4;

thus for ¢ > 0, the circuit in Laplace domain is

16

S

[S1E

(S}

Zf.v)

the loop equations can be written directly in the frequency domain as
Y1 (S) 1 4
—+z [N(s) —Ya(s)] = -
N 5 S

1 6 N
—ng(S) + gYQ(S) + §Y2(S) =2
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solving, we get

24(s +2) 24(s +2) —24 48
Yi(s) = = -+

s2+7s+12  (s+3)(s+4) s+3 s+4

and
A(s+7) 16 12

Y- = = —

2= T v 543 5+d
hence,

y1(t) = (=24e7" + 48¢™) u(r)
yao(t) = (16e73 = 12¢™*) u(r)
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Alternative solution: we use Thévenin’s theorem to compute Y7 (s) and Y5 (s)
the Thévenin impedance Z(s) and the Thévenin source V (s) (across right part of

terminals ab) are

Ls41 +2 -1 -4
Z(S)=§(25 ) o VO =T 2=
s+5+1 05+ s+5+1 35 +

l.
—

the current Y (s) is given by

I~

“

—-V(s)  24(s+2)
+Z(s) s2+Ts+12

Yi(s) = -

=

we can determine Y5 (s) in a similar manner)

—_ @

which matches our previous result
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