
6. Time-domain analysis of discrete-time systems

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability
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6.1



Difference equation

we consider the advance-form difference equation

𝑦[𝑛 + 𝑁] + 𝑎1𝑦[𝑛 + 𝑁 − 1] + · · · + 𝑎𝑁−1𝑦[𝑛 + 1] + 𝑎𝑁 𝑦[𝑛]
= 𝑏0𝑥 [𝑛 + 𝑁] + 𝑏1𝑥 [𝑛 + 𝑁 − 1] + · · · + 𝑏𝑁𝑥 [𝑛]

Operator notation: using notation 𝐸 𝑘𝑥 [𝑛] ≜ 𝑥 [𝑛 + 𝑘], we have

𝑄 [𝐸]𝑦[𝑛] = 𝑃[𝐸]𝑥 [𝑛]

where 𝑄 [𝐸] and 𝑃[𝐸] are 𝑁 th-order polynomial operators

𝑄 [𝐸] = 𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁
𝑃[𝐸] = 𝑏0𝐸𝑁 + 𝑏1𝐸𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁
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Zero-input response

the zero-input response 𝑦0 [𝑛] is the solution with 𝑥 [𝑛] = 0:(
𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁

)︸                                            ︷︷                                            ︸
𝑄[𝐸 ]

𝑦0 [𝑛] = 0

■ a linear combination of 𝑦0 [𝑛] and advanced 𝑦0 [𝑛] is zero for all 𝑛

■ possible if and only if 𝑦0 [𝑛] and advanced 𝑦0 [𝑛] share the same form

■ only an exponential function 𝛾𝑛 has this property: 𝐸 𝑘 {𝛾𝑛} = 𝛾𝑘𝛾𝑛

■ let 𝑦0 [𝑛] = 𝑐𝛾𝑛, then using 𝐸 𝑘𝑦0 [𝑛] = 𝑐𝛾𝑛+𝑘 , we obtain

𝑐(𝛾𝑁 + 𝑎1𝛾𝑁−1 + · · · + 𝑎𝑁−1𝛾 + 𝑎𝑁 )𝛾𝑛 = 𝑐𝑄 [𝛾] = 0

hence, 𝑐𝛾𝑛 is a zero-input solution if 𝑄 [𝛾] = 0
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Characteristic equation

𝑄 [𝛾] = 𝛾𝑁 + 𝑎1𝛾𝑁−1 + · · · + 𝑎𝑁−1𝛾 + 𝑎𝑁 = 0

■ 𝑄 [𝛾] is the characteristic polynomial

■ 𝑄 [𝛾] = 0 has 𝑁 solutions 𝛾1, 𝛾2, . . . , 𝛾𝑁 called characteristic roots of the
system or characteristic values (also eigenvalues) of the system

■ all 𝑐1𝛾𝑛1 , 𝑐2𝛾𝑛2 , . . . , 𝑐𝑁𝛾
𝑛
𝑁

satisfy the zero-input difference equation

■ the general form of the zir depends on whether the roots are distinct or repeated
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Zero-input response

Distinct roots: for distinct roots, 𝛾1, . . . , 𝛾𝑁 , the zero input solution is

𝑦0 [𝑛] = 𝑐1𝛾𝑛1 + 𝑐2𝛾𝑛2 + · · · + 𝑐𝑁𝛾𝑛𝑁

■ 𝛾𝑛1 , . . . , 𝛾
𝑛
𝑁

are the characteristic modes or natural modes of the system

■ 𝑐1, 𝑐2, . . . , 𝑐𝑁 are determined from 𝑁 auxiliary conditions (e.g., initial conditions)

Repeated roots: if the characteristic polynomial has a repeated root:

𝑄 [𝛾] = (𝛾 − 𝛾1)𝑟 (𝛾 − 𝛾𝑟+1) (𝛾 − 𝛾𝑟+2) · · · (𝛾 − 𝛾𝑁 )

then the zero-input response of the system is

𝑦0 [𝑛] =
(
𝑐1 + 𝑐2𝑛 + · · · + 𝑐𝑟𝑛𝑟−1

)
𝛾𝑛1 +

𝑁∑︁
𝑖=𝑟+1

𝑐𝑖𝛾
𝑛
𝑖

■ root 𝛾1 repeats 𝑟 times (root of multiplicity 𝑟)

■ the characteristic modes for 𝛾1 are 𝛾𝑛1 , 𝑛𝛾
𝑛
1 , 𝑛2𝛾𝑛1 , . . . , 𝑛

𝑟−1𝛾𝑛1
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Example 6.1

determine the zero-input response 𝑦0 [𝑛] of

𝑦[𝑛 + 2] − 0.6𝑦[𝑛 + 1] − 0.16𝑦[𝑛] = 5𝑥 [𝑛 + 2]

with input 𝑥 [𝑛] = 4−𝑛𝑢[𝑛] and initial conditions 𝑦[−1] = 0 and 𝑦[−2] = 25/4

Solution: the system of equation in operator notation is(
𝐸2 − 0.6𝐸 − 0.16

)
𝑦[𝑛] = 5𝐸2𝑥 [𝑛]

the characteristic polynomial is

𝑄 [𝛾] = 𝛾2 − 0.6𝛾 − 0.16 = (𝛾 + 0.2) (𝛾 − 0.8)

the characteristic equation is

(𝛾 + 0.2) (𝛾 − 0.8) = 0

the characteristic roots are 𝛾1 = −0.2 and 𝛾2 = 0.8
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the zero-input response is

𝑦0 [𝑛] = 𝑐1 (−0.2)𝑛 + 𝑐2 (0.8)𝑛

to find 𝑐1, 𝑐2, we use 𝑦0 [−1] = 0 and 𝑦0 [−2] = 25/4 to obtain:

0 = −5𝑐1 +
5

4
𝑐2

25
4 = 25𝑐1 + 25

16𝑐2

solving gives 𝑐1 = 1
5 and 𝑐2 = 4

5 ; therefore

𝑦0 [𝑛] = 1
5 (−0.2)

𝑛 + 4
5 (0.8)

𝑛, 𝑛 ≥ 0
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Example 6.2

(
𝐸2 + 6𝐸 + 9

)
𝑦[𝑛] =

(
2𝐸2 + 6𝐸

)
𝑥 [𝑛]

determine the zero-input response 𝑦0 [𝑛] if 𝑦0 [−1] = −1/3 and 𝑦0 [−2] = −2/9

Solution: the characteristic polynomial is 𝛾2 + 6𝛾 + 9 = (𝛾 + 3)2, and we have a
repeated characteristic root at 𝛾 = −3; hence, the zero-input response is

𝑦0 [𝑛] = (𝑐1 + 𝑐2𝑛) (−3)𝑛

we can determine the constants 𝑐1 and 𝑐2 from the initial conditions:

𝑦[−1] = (𝑐1 − 𝑐2) (−3)−1 = −1/3
𝑦[−2] = (𝑐1 − 2𝑐2) (−3)−2 = −2/9

solving we get 𝑐1 = 4 and 𝑐2 = 3; hence

𝑦0 [𝑛] = (4 + 3𝑛) (−3)𝑛 𝑛 ≥ 0
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Complex roots

for difference eq. with real coefficients, complex roots appear as conjugates pairs:

𝛾 = |𝛾 |𝑒 𝑗𝛽 and 𝛾∗ = |𝛾 |𝑒− 𝑗𝛽

complex form: the zero-input response is

𝑦0 [𝑛] = 𝑐1𝛾𝑛 + 𝑐2 (𝛾∗)𝑛

= 𝑐1 |𝛾 |𝑛𝑒 𝑗𝛽𝑛 + 𝑐2 |𝛾 |𝑛𝑒− 𝑗𝛽𝑛

where 𝑐1 = 𝑐∗2

real-form: let 𝑐1 = 𝑐
2 𝑒

𝑗 𝜃 and 𝑐2 = 𝑐
2 𝑒

− 𝑗 𝜃 , then we can write output as

𝑦0 [𝑛] = 𝑐 |𝛾 |𝑛 cos(𝛽𝑛 + 𝜃)

where 𝑐 and 𝜃 are constants determined from the auxiliary conditions
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Example 6.3

(
𝐸2 − 1.56𝐸 + 0.81

)
𝑦[𝑛] = (𝐸 + 3)𝑥 [𝑛]

determine the zero-input response 𝑦0 [𝑛] if 𝑦0 [−1] = 2 and 𝑦0 [−2] = 1

Solution: the characteristic equation is (𝛾2 − 1.56𝛾 + 0.81) = 0 and the
characteristic roots are 0.78 ± 𝑗0.45 = 0.9𝑒± 𝑗 (𝜋/6) ; so the complex form solution:

𝑦0 [𝑛] = 𝑐(0.9)𝑛𝑒 𝑗 𝜋𝑛/6 + 𝑐∗ (0.9)𝑛𝑒− 𝑗 𝜋𝑛/6

using the initial conditions 𝑦0 [−1] = 2 and 𝑦0 [−2] = 1, we find

𝑐 = 1.1550 − 𝑗0.2025 = 1.1726𝑒− 𝑗0.1735

𝑐∗ = 1.1550 + 𝑗0.2025 = 1.1726𝑒 𝑗0.1735

hence

𝑦0 [𝑛] = 1.1726𝑒− 𝑗0.1735(0.9)𝑛𝑒 𝑗 𝜋𝑛/6 + 1.1726𝑒 𝑗0.1735(0.9)𝑛𝑒− 𝑗 𝜋𝑛/6
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we can also find 𝑦0 [𝑛] using the real form of the solution; since 𝛾 = 0.9𝑒± 𝑗 (𝜋/6) , we
have |𝛾 | = 0.9 and 𝛽 = 𝜋/6, and the real-form zero-input response is

𝑦0 [𝑛] = 𝑐(0.9)𝑛 cos( 𝜋6 𝑛 + 𝜃)

to determine the constants 𝑐 and 𝜃, we use the initial conditions:

𝑦0 [−1] = 𝑐
0.9 cos(−

𝜋
6 + 𝜃) =

√
3

1.8𝑐 cos 𝜃 +
1
1.8𝑐 sin 𝜃 = 2

𝑦0 [−2] = 𝑐
(0.9)2 cos(−

𝜋
3 + 𝜃) = 1

1.62𝑐 cos 𝜃 +
√
3

1.62𝑐 sin 𝜃 = 1

solving gives 𝑐 cos 𝜃 = 2.308 and 𝑐 sin 𝜃 = −0.397; hence

tan 𝜃 = 𝑐 sin 𝜃
𝑐 cos 𝜃 = −0.397

2.308 = −0.172, 𝜃 = tan−1 (−0.172) = −0.17 rad

substituting 𝜃 = −0.17 radian in 𝑐 cos 𝜃 = 2.308 yields 𝑐 = 2.34 and

𝑦0 [𝑛] = 2.34(0.9)𝑛 cos( 𝜋6 𝑛 − 0.17) 𝑛 ≥ 0
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Finding zero-input response iteratively using MATLAB

use MATLAB to iteratively compute and then plot the zero-input response for

(𝐸2 − 1.56𝐸 + 0.81)𝑦[𝑛] = (𝐸 + 3)𝑥 [𝑛] with 𝑦[−1] = 2 and 𝑦[−2] = 1

n = (-2:20)’; y = [1;2;zeros(length(n)-2,1)];

for k = 1:length(n)-2,

y(k+2) = 1.56*y(k+1)-0.81*y(k);

end;

clf; stem(n,y,’k’); xlabel(’n’); ylabel(’y[n]’);

axis([-2 20 -1.5 2.5]);
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Outline

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability



Impulse response

■ the (unit) impulse response ℎ[𝑛] is output of the system when the input is 𝛿[𝑛]
with zero initial conditions

■ an LTI system is causal if and only if ℎ[𝑛] = 0 for 𝑛 < 0

Linear difference system

(𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁 )︸                                            ︷︷                                            ︸
𝑄[𝐸 ]

𝑦[𝑛]

= (𝑏0𝐸𝑁 + 𝑏1𝐸𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁 )︸                                               ︷︷                                               ︸
𝑃 [𝐸 ]

𝑥 [𝑛]

the impulse response ℎ[𝑛] to the above difference system satisfies:

■ 𝑄 [𝐸]ℎ[𝑛] = 𝑃[𝐸]𝛿[𝑛]

■ subject to initial conditions

ℎ[−1] = ℎ[−2] = · · · = ℎ[−𝑁] = 0
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Example 6.4

iteratively compute the first two values of the impulse response ℎ[𝑛] of:

𝑦[𝑛] − 0.6𝑦[𝑛 − 1] − 0.16𝑦[𝑛 − 2] = 5𝑥 [𝑛]

Solution: letting the input 𝑥 [𝑛] = 𝛿[𝑛] and the output 𝑦[𝑛] = ℎ[𝑛], we have

ℎ[𝑛] = 0.6ℎ[𝑛 − 1] + 0.16ℎ[𝑛 − 2] + 5𝛿[𝑛]

let ℎ[−1] = ℎ[−2] = 0; setting 𝑛 = 0 in this equation yields

ℎ[0] = 0.6(0) + 0.16(0) + 5(1) = 5

setting 𝑛 = 1 in the same equation and using ℎ[0] = 5, we obtain

ℎ[1] = 0.6(5) + 0.16(0) + 5(0) = 3

continuing this way, we can determine any number of terms of ℎ[𝑛]
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Closed form expression

(𝐸𝑁 + 𝑎1𝐸𝑁−1 + · · · + 𝑎𝑁−1𝐸 + 𝑎𝑁 )𝑦[𝑛]
= (𝑏0𝐸𝑁 + 𝑏1𝐸𝑁−1 + · · · + 𝑏𝑁−1𝐸 + 𝑏𝑁 )𝑥 [𝑛]

the impulse response with 𝑎𝑁 ≠ 0 can be expressed as

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝑦𝑐 [𝑛]𝑢[𝑛]

■ 𝐴0 = 𝑏𝑁/𝑎𝑁 (assuming 𝑎𝑁 ≠ 0)

■ 𝑦𝑐 [𝑛] is a linear combination of the characteristic modes
– for unrepeated roots 𝑦𝑐 [𝑛] = 𝑐1𝛾𝑛1 + · · · + 𝑐𝑁 𝛾𝑛𝑁
– repeated roots has form as in page 6.5

■ to find 𝑐1, . . . , 𝑐𝑁 , we need to compute 𝑁 values ℎ[0], ℎ[1], . . . , ℎ[𝑁 − 1]
iteratively

SA — EE312unit-impulse response 6.15



Finding 𝐴0: substituting ℎ[𝑛] into our equation, we obtain

𝑄 [𝐸] (𝐴0𝛿[𝑛] + 𝑦𝑐 [𝑛]𝑢[𝑛]) = 𝑃[𝐸]𝛿[𝑛]

since 𝑦𝑐 [𝑛] is made up of characteristic modes, 𝑄 [𝐸]𝑦𝑐 [𝑛] = 0; hence

𝐴0 (𝛿[𝑛 + 𝑁] + 𝑎1𝛿[𝑛 + 𝑁 − 1] + · · · + 𝑎𝑁 𝛿[𝑛]) = 𝑏0𝛿[𝑛 + 𝑁] + · · · + 𝑏𝑁 𝛿[𝑛]

setting 𝑛 = 0 and using 𝛿[𝑚] = 0 for all 𝑚 ≠ 0, and 𝛿[0] = 1, we obtain

𝐴0𝑎𝑁 = 𝑏𝑁 =⇒ 𝐴0 =
𝑏𝑁

𝑎𝑁
(assuming 𝑎𝑁 ≠ 0)
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Example 6.5

determine the unit impulse response ℎ[𝑛] for a system specified by the equation

𝑦[𝑛] − 0.6𝑦[𝑛 − 1] − 0.16𝑦[𝑛 − 2] = 5𝑥 [𝑛]

Solution: this equation can be expressed in the advance form as

𝑦[𝑛 + 2] − 0.6𝑦[𝑛 + 1] − 0.16𝑦[𝑛] = 5𝑥 [𝑛 + 2]

or in advance operator form as(
𝐸2 − 0.6𝐸 − 0.16

)
𝑦[𝑛] = 5𝐸2𝑥 [𝑛]

the characteristic polynomial is

𝛾2 − 0.6𝛾 − 0.16 = (𝛾 + 0.2) (𝛾 − 0.8)

the characteristic modes are (−0.2)𝑛 and (0.8)𝑛; therefore,

𝑦𝑐 [𝑛] = 𝑐1 (−0.2)𝑛 + 𝑐2 (0.8)𝑛
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by inspection, we see that 𝑎𝑁 = −0.16 and 𝑏𝑁 = 0; hence

ℎ[𝑛] = [𝑐1 (−0.2)𝑛 + 𝑐2 (0.8)𝑛] 𝑢[𝑛]

to determine 𝑐1 and 𝑐2, we need to find two values of ℎ[𝑛] iteratively; from the
example in page 6.14, we know that ℎ[0] = 5 and ℎ[1] = 3; hence

ℎ[0] = 5 = 𝑐1 + 𝑐2
ℎ[1] = 3 = −0.2𝑐1 + 0.8𝑐2

}
=⇒ 𝑐1 = 1

𝑐2 = 4

therefore,

ℎ[𝑛] = [(−0.2)𝑛 + 4(0.8)𝑛] 𝑢[𝑛]
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Other cases

when 𝑎𝑁 = 0 and 𝑎𝑁−1 ≠ 0, then

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝐴1𝛿[𝑛 − 1] + 𝑦𝑐 [𝑛]𝑢[𝑛]

■ 𝑦𝑐 [𝑛] contains the characteristic terms of 𝑄 [𝛾] = 𝑄 [𝛾]/𝛾
■ unknowns 𝐴0, 𝐴1, 𝑐1, 𝑐2, . . . are found from 𝑁 + 1 values ℎ[0], ℎ[1], . . . , ℎ[𝑁]

when 𝑎𝑁 = 𝑎𝑁−1 = 0 and 𝑎𝑁−2 ≠ 0, then

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝐴1𝛿[𝑛 − 1] + 𝐴2𝛿[𝑛 − 2] + 𝑦𝑐 [𝑛]𝑢[𝑛]

■ 𝑦𝑐 [𝑛] contains the characteristic terms of 𝑄 [𝛾] = 𝑄 [𝛾]/𝛾2

■ unknowns 𝐴0, 𝐴1, 𝐴2, 𝑐1, 𝑐2 . . . are found from 𝑁 + 1 values ℎ[0], . . . , ℎ[𝑁]

...etc
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Example 6.6

determine the impulse response ℎ[𝑛] of a system described by the equation

(𝐸3 + 𝐸2)𝑦[𝑛] = 𝑥 [𝑛]

Solution: in this case, 𝑎𝑁 = 𝑎𝑁−1 = 0, and the characteristic roots: one at −1 and
two at 0; only the nonzero characteristic root shows up in 𝑦𝑐 [𝑛], so

ℎ[𝑛] = 𝐴0𝛿[𝑛] + 𝐴1𝛿[𝑛 − 1] + 𝐴2𝛿[𝑛 − 2] + 𝑐1 (−1)𝑛𝑢[𝑛]

to determine the coefficients 𝐴0, 𝐴1, 𝐴2, and 𝑐1, we require 𝑁 + 1 = 4 values of
ℎ[𝑛] (𝑛 ≥ 0), which we obtain iteratively using Matlab:

n = (-3:3); delta = (n==0); h = zeros(size(n));

for ind = find(n>=0)

h(ind) = -h(ind-1)+delta(ind-3);

end

h(n>=0)

[output: ans = 0 0 0 1] using these values to solve for the constants, we get

ℎ[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] − (−1)𝑛𝑢[𝑛]
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Finding impulse response using MATLAB

filter command can be used in MATLAB to solve find the impulse response

Example: 𝑦[𝑛] − 0.6𝑦[𝑛 − 1] − 0.16𝑦[𝑛 − 2] = 5𝑥 [𝑛] with 𝑥 [𝑛] = 𝛿[𝑛]

n = (0:19); delta = @(n) 1.0.*(n==0);

a = [1 -0.6 -0.16]; b = [5 0 0];

h = filter(b,a,delta(n));

clf; stem(n,h,’k’); xlabel(’n’); ylabel(’h[n]’);
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Outline

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability



Derivation of zero-state response

we can express any arbitrary input 𝑥 [𝑛] as a sum of impulse components:

𝑥 [𝑛] = 𝑥 [0]𝛿[𝑛] + 𝑥 [1]𝛿[𝑛 − 1] + 𝑥 [2]𝛿[𝑛 − 2] + · · ·
+ 𝑥 [−1]𝛿[𝑛 + 1] + 𝑥 [−2]𝛿[𝑛 + 2] + · · ·

=

∞∑︁
𝑚=−∞

𝑥 [𝑚]𝛿[𝑛 − 𝑚]

let ℎ[𝑛] be the system response to impulse input 𝛿[𝑛] (𝛿[𝑛] =⇒ ℎ[𝑛]), then due to
linearity and time invariance

𝑥 [𝑛] =
∞∑︁

𝑚=−∞
𝑥 [𝑚]𝛿[𝑛 − 𝑚] =⇒

∞∑︁
𝑚=−∞

𝑥 [𝑚]ℎ[𝑛 − 𝑚]︸                    ︷︷                    ︸
𝑦 [𝑛]

the right-hand side is the system response 𝑦[𝑛] to input 𝑥 [𝑛]
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Zero-state response and convolution

the zero-state response is:

𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛 − 𝑚] =
∞∑︁

𝑚=−∞
𝑥 [𝑚]ℎ[𝑛 − 𝑚]

■ the summation is known as the convolution sum of 𝑥 [𝑛] and ℎ[𝑛]
■ for causal input and system (ℎ[𝑘] = 𝑥 [𝑘] = 0 for 𝑘 < 0), we have

𝑦[𝑛] =
𝑛∑︁

𝑚=0

𝑥 [𝑚]ℎ[𝑛 − 𝑚]
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Example 6.7

determine 𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛] analytically for

𝑥 [𝑛] = (0.8)𝑛𝑢[𝑛] and ℎ[𝑛] = (0.3)𝑛𝑢[𝑛]

Solution: note that 𝑥 [𝑚] = (0.8)𝑚𝑢[𝑚] and ℎ[𝑛 − 𝑚] = (0.3)𝑛−𝑚𝑢[𝑛 − 𝑚] both
𝑥 [𝑛] and ℎ[𝑛] are causal, thus

𝑦[𝑛] =
𝑛∑︁

𝑚=0

𝑥 [𝑚]ℎ[𝑛 − 𝑚] =
𝑛∑︁

𝑚=0

(0.8)𝑚𝑢[𝑚] (0.3)𝑛−𝑚𝑢[𝑛 − 𝑚]

=

{ ∑𝑛
𝑚=0 (0.8)𝑚 (0.3)𝑛−𝑚 𝑛 ≥ 0

0 𝑛 < 0

or

𝑦[𝑛] = (0.3)𝑛
𝑛∑︁

𝑚=0

(0.8/0.3)𝑚𝑢[𝑛] = (0.3)𝑛 1 − (0.8/0.3)𝑛+1
1 − (0.8/0.3) 𝑢[𝑛]

= 2
[
(0.8)𝑛+1 − (0.3)𝑛+1

]
𝑢[𝑛]
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Properties of convolution sum

Commutative

𝑥1 [𝑛] ∗ 𝑥2 [𝑛] = 𝑥2 [𝑛] ∗ 𝑥1 [𝑛]

Distributive

𝑥1 [𝑛] ∗ (𝑥2 [𝑛] + 𝑥3 [𝑛]) = 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] + 𝑥1 [𝑛] ∗ 𝑥3 [𝑛]

Associative

𝑥1 [𝑛] ∗ (𝑥2 [𝑛] ∗ 𝑥3 [𝑛]) = (𝑥1 [𝑛] ∗ 𝑥2 [𝑛]) ∗ 𝑥3 [𝑛]

Shifting: if 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] = 𝑦[𝑛] then

𝑥1 [𝑛 − 𝑚] ∗ 𝑥2 [𝑛 − 𝑝] = 𝑦[𝑛 − 𝑚 − 𝑝]

Convolution with an Impulse

𝑥 [𝑛] ∗ 𝐴𝛿[𝑛 − 𝑛0] = 𝐴𝑥 [𝑛 − 𝑛0]
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Differencing: if 𝑦[𝑛] = 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] then

𝑦[𝑛] − 𝑦[𝑛 − 1] = 𝑥1 [𝑛] ∗ (𝑥2 [𝑛] − 𝑥2 [𝑛 − 1])

Summation: if 𝑦[𝑛] = 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] then

∞∑︁
𝑛=−∞

𝑦[𝑛] =
( ∞∑︁
𝑛=−∞

𝑥1 [𝑛]
)
×

( ∞∑︁
𝑛=−∞

𝑥2 [𝑛]
)

Length: 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] has length 𝐿1 + 𝐿2 − 1 with 𝐿1,𝐿2 lengths of 𝑥1 [𝑛], 𝑥2 [𝑛]

Width

■ the width of a signal is the number of its elements (length) minus one

■ width of 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] is𝑊1 +𝑊2 where𝑊1,𝑊2 are widths of 𝑥1 [𝑛], 𝑥2 [𝑛]
– let 𝑛1 and 𝑛2 be the starting point where 𝑥1 [𝑛] and 𝑥2 [𝑛] has nonzero value

– 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] starts from 𝑛1 + 𝑛2
– 𝑥1 [𝑛] ∗ 𝑥2 [𝑛] ends at 𝑛1 + 𝑛2 +𝑊1 +𝑊2

SA — EE312zero-state response and convolution 6.26



Example 6.8 (convolution from table)

■ many convolution sums can be found from already determined signal pairs
(convolution table)

■ we can combine these pairs with convolution properties to find more complicated
convolutions

Example: use the table to find the following convolutions

(a) 𝑦𝑎 [𝑛] = (0.8)𝑛𝑢[𝑛] ∗ 𝑢[𝑛]
(b) 𝑦𝑏 [𝑛] = (0.8)𝑛𝑢[𝑛 − 1] ∗ 𝑢[𝑛 + 3]
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Solution:

(a) direct application of pair 4 from table gives

𝑦𝑎 [𝑛] = (0.8)𝑛𝑢[𝑛] ∗ 𝑢[𝑛] = 0.8𝑛+1 − 1

0.8 − 1
𝑢[𝑛] = 5(1 − (0.8)𝑛+1)𝑢[𝑛]

(b) we have

𝑦𝑏 [𝑛] = (0.8)𝑛𝑢[𝑛 − 1] ∗ 𝑢[𝑛 + 3] = 0.8(0.8)𝑛−1𝑢[𝑛 − 1] ∗ 𝑢[𝑛 + 3]

hence from shifting property

𝑦𝑏 [𝑛] = 0.8𝑦𝑎 [𝑛 + 2] = 4(1 − (0.8)𝑛+3)𝑢[𝑛 + 2]
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Graphical procedure

𝑐[𝑛] = 𝑥 [𝑛] ∗ 𝑔[𝑛] =
∞∑︁

𝑚=−∞
𝑥 [𝑚]𝑔[𝑛 − 𝑚]

the convolution operation can be performed as follows:

1. we first plot 𝑥 [𝑚] and 𝑔[𝑛 − 𝑚] as functions of 𝑚

2. invert 𝑔[𝑚] about the vertical axis (𝑚 = 0) to obtain 𝑔[−𝑚]

3. shift 𝑔[−𝑚] by 𝑛 units to obtain 𝑔[𝑛 − 𝑚]
– for 𝑛 > 0, the shift is to the right (delay)
– for 𝑛 < 0, the shift is to the left (advance)

4. multiply 𝑥 [𝑚] and 𝑔[𝑛 − 𝑚] and add all the products to obtain 𝑐[𝑛]

(the procedure is repeated for each value of 𝑛 over the range −∞ to ∞)
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Example 6.9

find 𝑐[𝑛] = 𝑥 [𝑛] ∗ 𝑔[𝑛], where

𝑥 [𝑛] = (0.8)𝑛𝑢[𝑛] and 𝑔[𝑛] = (0.3)𝑛𝑢[𝑛]
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Solution: note that

𝑥 [𝑚] = (0.8)𝑚 and 𝑔[𝑛 − 𝑚] = (0.3)𝑛−𝑚

SA — EE312zero-state response and convolution 6.31



■ for 𝑛 < 0, there is no overlap, so that 𝑐[𝑛] = 0 for 𝑛 < 0
■ for 𝑛 ≥ 0, the two functions overlap over the interval 0 ≤ 𝑚 ≤ 𝑛:

𝑐[𝑛] =
𝑛∑︁

𝑚=0

𝑥 [𝑚]𝑔[𝑛 − 𝑚] =
𝑛∑︁

𝑚=0

(0.8)𝑚 (0.3)𝑛−𝑚 = (0.3)𝑛
𝑛∑︁

𝑚=0

( 0.80.3 )
𝑚

= 2[(0.8)𝑛+1 − (0.3)𝑛+1] 𝑛 ≥ 0

combining pieces, we see that

𝑐[𝑛] = 2[(0.8)𝑛+1 − (0.3)𝑛+1]𝑢[𝑛]
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Example 6.10: Sliding-tape method

this examples illustrates how to use the sliding-tape method to find 𝑥 [𝑛] ∗ 𝑔[𝑛] for
the signals shown below
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Solution: in this procedure we represent the sequences 𝑥 [𝑚] and 𝑔[𝑚] as tapes;
we then get the 𝑔[−𝑚] tape by inverting the 𝑔[𝑚] tape about the origin (𝑚 = 0)

rotate the 𝑔 tape about the vertical axis

𝑥 tape

𝑔 tape
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we now shift the inverted tape by 𝑛 slots, multiply values on two tapes in adjacent
slots, and add all the products to find 𝑐[𝑛]
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𝑐[0] = (−2 × 1) + (−1 × 1) + (0 × 1) = −3
𝑐[1] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) = −2
𝑐[2] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) = 0

𝑐[3] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) = 3

𝑐[4] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) = 7

𝑐[5] = (−2 × 1) + (−1 × 1) + (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) = 7

𝑐[𝑛] = 7 𝑛 ≥ 4

similarly, we compute 𝑐[𝑛] for negative 𝑛 by sliding the tape backward:

𝑐[−1] = (−2 × 1) + (−1 × 1) = −3
𝑐[−2] = (−2 × 1) = −2

𝑐[−3] = 0

𝑐[𝑛] = 0 𝑛 ≤ −4
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Discrete-time convolution using MATLAB

x = [0 1 2 3 2 1]; g = [1 1 1 1 1 1];

n = (0:1:length(x)+length(g)-2);

c = conv(x,g);

clf; stem(n,c,’k’); xlabel(’n’); ylabel(’c[n]’);

axis([-0.5 10.5 0 10]);
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Finding the zero-state response using MATLAB

MATLAB filter can be used to find the zero-state response

Example: (𝐸2 + 0.5𝐸 − 1)𝑦[𝑛] = (2𝐸2 + 6𝐸)𝑥 [𝑛] with input 𝑥 [𝑛] = 4−𝑛𝑢[𝑛]
n = (0:11); x = @(n) 4.^(-n).*(n>=0);

a = [1 0.5 -1]; b = [2 6 0]; y = filter(b,a,x(n));

clf; stem(n,y,’k’); xlabel(’n’); ylabel(’y[n]’);

axis([-0.5 11.5 -20 25]);
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although the input is bounded and quickly decays to zero, the system itself is unstable
and an unbounded output results
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Polynomial product and convolution

if 𝑎[𝑛] and 𝑏[𝑛] are the coefficients of polynomials

𝑝(𝑠) = 𝑎[0] + 𝑎[1]𝑠 + · · · + 𝑎[𝑁 − 1]𝑠𝑁−1

𝑞(𝑠) = 𝑏[0] + 𝑏[1]𝑠 + · · · + 𝑏[𝑀 − 1]𝑠𝑀−1

then 𝑐[𝑛] = 𝑎[𝑛] ∗ 𝑏[𝑛] gives the coefficients of the product polynomial

𝑝(𝑠)𝑞(𝑠) = 𝑐[0] + 𝑐[1]𝑠 + 𝑐[2]𝑠2 + · · · + 𝑐[𝑁 + 𝑀 − 2]𝑠𝑁+𝑀−2

Example: the coefficient of (𝑠 + 1) (𝑠 + 2)2 can be found by

[1, 1] ∗ ([1, 2] ∗ [1, 2])

in MATLAB

>>[conv([1 1],conv([1 2],[1 2]))]

ans = 4 8 5 1

hence (𝑠 + 1) (𝑠 + 2)2 = 4 + 8𝑠 + 5𝑠2 + 𝑠3
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Interconnected systems

Parallel systems

Cascade systems

because ℎ1 [𝑛] ∗ ℎ2 [𝑛] = ℎ2 [𝑛] ∗ ℎ1 [𝑛], linear systems commute; hence, we can
interchange the order of cascade systems without affecting the final result
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Example:

■ if 𝑥 [𝑛] =⇒ 𝑦[𝑛], then
∑𝑛

𝑘=−∞ 𝑥 [𝑘] =⇒
∑𝑛

𝑘=−∞ 𝑦[𝑘]

■ if 𝑥 [𝑛] = 𝛿[𝑛] then 𝑦[𝑛] = ℎ[𝑛] and
∑𝑛

𝑘=−∞ 𝑥 [𝑘] = 𝑢[𝑛]
Unit-step response:

𝑔[𝑛] =
𝑛∑︁

𝑘=−∞
ℎ[𝑘]

it also holds that

ℎ[𝑛] = 𝑔[𝑛] − 𝑔[𝑛 − 1]
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Inverse systems

the cascade of a system ℎ[𝑛] with its inverse ℎ𝑖 [𝑛] is an identity system

ℎ[𝑛] ∗ ℎ𝑖 [𝑛] = 𝛿[𝑛]

Example: the accumulator system 𝑦[𝑛] =
∑𝑛

𝑘=−∞ 𝑥 [𝑘] and the backward
difference system 𝑦[𝑛] = 𝑥 [𝑛] − 𝑥 [𝑛 − 1] are the inverse of each other

to see this, note that the impulse response of the accumulator and backward
difference systems are is

ℎacc [𝑛] =
𝑛∑︁

𝑘=−∞
𝛿[𝑘] = 𝑢[𝑛] and ℎbdf [𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1]

we can verify that

ℎacc ∗ ℎbdf = 𝑢[𝑛] ∗ {𝛿[𝑛] − 𝛿[𝑛 − 1]} = 𝑢[𝑛] − 𝑢[𝑛 − 1] = 𝛿[𝑛]
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Example 6.11 (total response)

total response of LTID system = ZIR + 𝑥 [𝑛] ∗ ℎ[𝑛]︸        ︷︷        ︸
ZSR

find the output of the system described by the equation

𝑦[𝑛 + 2] − 0.6𝑦[𝑛 + 1] − 0.16𝑦[𝑛] = 5𝑥 [𝑛 + 2]

with initial conditions 𝑦[−1] = 0, 𝑦[−2] = 25/4 and input 𝑥 [𝑛] = (4)−𝑛𝑢[𝑛]

Solution: from slides 6.6 and 6.17 , we know that zero-input response and impulse
response are

𝑦0 [𝑛] = 0.2(−0.2)𝑛 + 0.8(0.8)𝑛

ℎ[𝑛] = [(−0.2)𝑛 + 4(0.8)𝑛] 𝑢[𝑛]
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the zero-state response is:

𝑦[𝑛] = 𝑥 [𝑛] ∗ ℎ[𝑛]
= (0.25)𝑛𝑢[𝑛] ∗

[
(−0.2)𝑛𝑢[𝑛] + 4(0.8)𝑛𝑢[𝑛]

]
= (0.25)𝑛𝑢[𝑛] ∗ (−0.2)𝑛𝑢[𝑛] + (0.25)𝑛𝑢[𝑛] ∗ 4(0.8)𝑛𝑢[𝑛]

using pair 4 of convolution table, we get

𝑦[𝑛] =
[
(0.25)𝑛+1 − (−0.2)𝑛+1

0.25 − (−0.2) + 4
(0.25)𝑛+1 − (0.8)𝑛+1

0.25 − 0.8

]
𝑢[𝑛]

=
(
2.22

[
(0.25)𝑛+1 − (−0.2)𝑛+1

]
− 7.27

[
(0.25)𝑛+1 − (0.8)𝑛+1

] )
𝑢[𝑛]

= [−1.26(0.25)𝑛 + 0.444(−0.2)𝑛 + 5.81(0.8)𝑛] 𝑢[𝑛]

therefore, the total response for 𝑛 ≥ 0 is

total response = 0.2(−0.2)𝑛 + 0.8(0.8)𝑛︸                         ︷︷                         ︸
ZIR

+ 0.444(−0.2)𝑛 + 5.81(0.8)𝑛 − 1.26(4)−𝑛︸                                                 ︷︷                                                 ︸
ZSR
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Natural and forced response

■ when all the characteristic mode terms in the total response are lumped together,
the resulting component is the natural response

■ the remaining part of the total response that is made up of noncharacteristic
modes is the forced response

Example: the characteristic modes of the previous system are (−0.2)𝑛 and (0.8)𝑛;
hence

total response = 0.644(−0.2)𝑛 + 6.61(0.8)𝑛︸                             ︷︷                             ︸
natural response

−1.26(4)−𝑛︸        ︷︷        ︸
forced response

𝑛 ≥ 0

just like differential equations, the classical solution to difference equations includes
the natural and forced responses
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Finding total response using MATLAB

filter and filtic commands provides an efficient way to find the response of

𝑁∑︁
𝑘=0

𝑎𝑘𝑦[𝑛 − 𝑘] =
𝑁∑︁
𝑘=0

𝑏𝑘𝑥 [𝑛 − 𝑘]

Example: we can solve

𝑦[𝑛] − 𝑦[𝑛 − 1] + 𝑦[𝑛 − 2] = 𝑥 [𝑛]

when 𝑥 [𝑛] = cos(2𝜋𝑛/6)𝑢[𝑛] and 𝑦[−2] = 2, 𝑦[−1] = 1 using the commands

b = [1 0 0]; a = [1 -1 1];

n = (0:30)’; x = @(n) cos(2*pi*n/6).*(n>=0);

z_i = filtic(b,a,[1 2]); % needed only for initial conditions

y = filter(b,a,x(n),z_i); % y = filter(b,a,x(n)); for zero i.c.

clf; stem(n,y,’k’); axis([-.5 30.5 -1.1 1.1]);

xlabel(’n’); ylabel(’y[n]’);
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Outline

• zero-input response

• unit-impulse response

• zero-state response and convolution

• system stability



BIBO stability

■ a system is BIBO stable if every bounded input results in a bounded output

■ an LTID system is BIBO stable if and only if there exists a 𝐾 such that

∞∑︁
𝑛=−∞

|ℎ[𝑛] | < 𝐾 < ∞

proof: note that

|𝑦[𝑛] | =
����� ∞∑︁
𝑚=−∞

ℎ[𝑚]𝑥 [𝑛 − 𝑚]
����� ≤ ∞∑︁

𝑚=−∞
|ℎ[𝑚] | |𝑥 [𝑛 − 𝑚] |

if 𝑥 [𝑛] is bounded, then |𝑥 [𝑛 − 𝑚] | < 𝐾0 < ∞, and

|𝑦[𝑛] | ≤ 𝐾0

∞∑︁
𝑚=−∞

|ℎ[𝑚] |

clearly the output is bounded if
∑∞

𝑚=−∞ |ℎ[𝑚] | is bounded
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Internal stability

for LTID systems, internal stability (asymptotical stability or the zero-input stability), is
defined in terms of the zero-input response of a system

an LTID system is

1. asymptotically stable if, and only if, all the characteristic roots are inside the unit
circle (the roots may be simple or repeated)

2. marginally stable if and only if there are no roots outside the unit circle and there
are some unrepeated roots on the unit circle

3. unstable if, and only if, either one or both of the following conditions exist:
(i) at least one root is outside the unit circle
(ii) there are repeated roots on the unit circle
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marginally stable

stable

unstable

if |𝛾 | < 1, then 𝛾𝑛 → 0 as 𝑛→ ∞
if |𝛾 | > 1, then 𝛾𝑛 → ∞ as 𝑛→ ∞
if |𝛾 | = 1, then |𝛾 |𝑛 = 1 for all 𝑛

Relation with BIBO stability

■ an asymptotically stable system is BIBO-stable

■ converse not true; BIBO stability does not ensure asymptotic stability

■ marginal stability or asymptotic instability implies that the system is BIBO-unstable

SA — EE312system stability 6.49



SA — EE312system stability 6.50



Example 6.12

an LTID systems consists of two subsystems 𝑆1 and 𝑆2 in cascade

the impulse response of these systems are

ℎ1 [𝑛] = 4𝛿[𝑛] − 3(0.5)𝑛𝑢[𝑛] and ℎ2 [𝑛] = 2𝑛𝑢[𝑛]

investigate the BIBO and asymptotic stability of the composite system
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Solution: the composite system impulse response ℎ[𝑛] is given by

ℎ[𝑛] = ℎ1 [𝑛] ∗ ℎ2 [𝑛] = ℎ2 [𝑛] ∗ ℎ1 [𝑛] = 2𝑛𝑢[𝑛] ∗ (4𝛿[𝑛] − 3(0.5)𝑛𝑢[𝑛])

= 4(2)𝑛𝑢[𝑛] − 3

[
2𝑛+1 − (0.5)𝑛+1

2 − 0.5

]
𝑢[𝑛]

= (0.5)𝑛𝑢[𝑛]

■ the system is BIBO-stable because ℎ[𝑛] = (0.5)𝑛𝑢[𝑛] is absolutely summable

■ 𝑆2 is unstable because its characteristic root, 2, lies outside the unit circle

■ thus total system is asymptotically unstable

■ this shows that BIBO stability does not necessarily ensure asymptotic stability
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Example 6.13

determine the internal and external stability of systems specified by the following
equations; in each case plot the characteristic roots in the complex plane

(a) 𝑦[𝑛 + 2] + 2.5𝑦[𝑛 + 1] + 𝑦[𝑛] = 𝑥 [𝑛 + 1] − 2𝑥 [𝑛]
(b) 𝑦[𝑛] − 𝑦[𝑛 − 1] + 0.21𝑦[𝑛 − 2] = 2𝑥 [𝑛 − 1] + 3𝑥 [𝑛 − 2]
(c) 𝑦[𝑛 + 3] + 2𝑦[𝑛 + 2] + 3

2 𝑦[𝑛 + 1] + 1
2 𝑦[𝑛] = 𝑥 [𝑛 + 1]

(d)
(
𝐸2 − 𝐸 + 1

)2
𝑦[𝑛] = (3𝐸 + 1)𝑥 [𝑛]

Solution:

(a) the characteristic polynomial is 𝛾2 + 2.5𝛾 + 1 = (𝛾 + 0.5) (𝛾 + 2) and the
characteristic roots are −0.5 and −2; −2 lies outside the unit circle), so the
system is BIBO-unstable and also asymptotically unstable

(b) the characteristic polynomial is 𝛾2 − 𝛾 + 0.21 = (𝛾 − 0.3) (𝛾 − 0.7) and the
characteristic roots are 0.3 and 0.7, both of which lie inside the unit circle; the
system is BIBO-stable and asymptotically stable

(c) the characteristic polynomial is
𝛾3+2𝛾2+ 3

2𝛾+
1
2 = (𝛾+1)

(
𝛾2 + 𝛾 + 1

2

)
= (𝛾+1) (𝛾+0.5− 𝑗0.5) (𝛾+0.5+ 𝑗0.5)
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the characteristic roots are −1,−0.5 ± 𝑗0.5; one of the characteristic roots is on
the unit circle and the remaining two roots are inside the unit circle; the system is
BIBO-unstable but marginally stable

(d) the characteristic polynomial is(
𝛾2 − 𝛾 + 1

)2
=

(
𝛾 − 1

2 − 𝑗
√
3
2

)2 (
𝛾 − 1

2 + 𝑗
√
3
2

)2
the characteristic roots are (1/2) ± 𝑗 (

√
3/2) = 1𝑒± 𝑗 (𝜋/3) repeated twice, and

they lie on the unit circle; the system is BIBO-unstable and asymptotically unstable
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