6. Time-domain analysis of discrete-time systems

- [zero-input response](#page-1-0)
- [unit-impulse response](#page-12-0)
- [zero-state response and convolution](#page-22-0)
- [system stability](#page-48-0)

Difference equation

we consider the advance-form difference equation

$$
y[n+N] + a_1y[n+N-1] + \cdots + a_{N-1}y[n+1] + a_Ny[n]
$$

= $b_0x[n+N] + b_1x[n+N-1] + \cdots + b_Nx[n]$

Operator notation: using notation $E^k x[n] \triangleq x[n+k]$, we have

 $Q[E]y[n] = P[E]x[n]$

where $Q[E]$ and $P[E]$ are Nth-order polynomial operators

$$
Q[E] = EN + a1EN-1 + \dots + aN-1E + aN
$$

$$
P[E] = b0EN + b1EN-1 + \dots + bN-1E + bN
$$

Zero-input response

the *zero-input response* $y_0[n]$ is the solution with $x[n] = 0$:

$$
\underbrace{(E^{N} + a_1 E^{N-1} + \dots + a_{N-1} E + a_N)}_{Q[E]}
$$
 $y_0[n] = 0$

- **a** a linear combination of $y_0[n]$ and advanced $y_0[n]$ is zero for all n
- **•** possible if and only if $y_0[n]$ and advanced $y_0[n]$ share the same form
- \bullet only an exponential function γ^n has this property: E^k $\{\gamma^n\}$ = $\gamma^k \gamma^n$
- let $y_0[n] = c\gamma^n$, then using $E^k y_0[n] = c\gamma^{n+k}$, we obtain

$$
c(\gamma^N + a_1 \gamma^{N-1} + \dots + a_{N-1} \gamma + a_N)\gamma^n = cQ[\gamma] = 0
$$

hence, $c\gamma^n$ is a zero-input solution if $Q[\gamma]=0$

Characteristic equation

$$
Q[\gamma] = \gamma^N + a_1 \gamma^{N-1} + \dots + a_{N-1} \gamma + a_N = 0
$$

- $\Omega[\gamma]$ is the *characteristic polynomial*
- $Q[\gamma] = 0$ has N solutions $\gamma_1, \gamma_2, \ldots, \gamma_N$ called *characteristic roots* of the system or *characteristic values* (also *eigenvalues*) of the system
- all $c_1 \gamma_1^n$ n_1 , $c_2 \gamma_2^n$ $n_2^2, \ldots, c_N \gamma_N^n$ satisfy the zero-input difference equation
- the general form of the zir depends on whether the roots are distinct or repeated

Zero-input response

Distinct roots: for distinct roots, $\gamma_1, \ldots, \gamma_N$, the zero input solution is

$$
y_0[n] = c_1\gamma_1^n + c_2\gamma_2^n + \dots + c_N\gamma_N^n
$$

- γ_1^n $\gamma_1^n, \ldots, \gamma_N^n$ are the *characteristic modes* or *natural modes* of the system
- c_1, c_2, \ldots, c_N are determined from N auxiliary conditions (*e.g.*, initial conditions)

Repeated roots: if the characteristic polynomial has a repeated root:

$$
Q[\gamma] = (\gamma - \gamma_1)^r (\gamma - \gamma_{r+1}) (\gamma - \gamma_{r+2}) \cdots (\gamma - \gamma_N)
$$

then the zero-input response of the system is

$$
y_0[n] = (c_1 + c_2 n + \dots + c_r n^{r-1}) \gamma_1^n + \sum_{i=r+1}^N c_i \gamma_i^n
$$

- root γ_1 repeats r times (root of multiplicity r)
- the characteristic modes for γ_1 are $\gamma_1^{\prime\prime}$ \sum_{1}^{n} , $n\gamma_{1}^{n}$, $n^{2}\gamma_{1}^{n}$ $n_1^n, \ldots, n^{r-1} \gamma_1^n$ 1

z ero-input response \S \sim 6.5 \sim 6

Example 6.1

determine the zero-input response $y_0[n]$ of

$$
y[n+2] - 0.6y[n+1] - 0.16y[n] = 5x[n+2]
$$

with input $x[n] = 4^{-n}u[n]$ and initial conditions $y[-1] = 0$ and $y[-2] = 25/4$

Solution: the system of equation in operator notation is

$$
(E2 - 0.6E - 0.16) y[n] = 5E2 x[n]
$$

the characteristic polynomial is

$$
Q[\gamma] = \gamma^2 - 0.6\gamma - 0.16 = (\gamma + 0.2)(\gamma - 0.8)
$$

the characteristic equation is

$$
(\gamma + 0.2)(\gamma - 0.8) = 0
$$

the characteristic roots are $\gamma_1 = -0.2$ and $\gamma_2 = 0.8$

[zero-input response](#page-1-0) $\begin{array}{ccc} \texttt{SIA} & \texttt{EES12} & \texttt{6.6} \end{array}$

the zero-input response is

$$
y_0[n] = c_1(-0.2)^n + c_2(0.8)^n
$$

to find c_1, c_2 , we use $y_0[-1] = 0$ and $y_0[-2] = 25/4$ to obtain:

$$
0 = -5c_1 + \frac{5}{4}c_2
$$

$$
\frac{25}{4} = 25c_1 + \frac{25}{16}c_2
$$

solving gives $c_1 = \frac{1}{5}$ and $c_2 = \frac{4}{5}$; therefore

$$
y_0[n] = \frac{1}{5}(-0.2)^n + \frac{4}{5}(0.8)^n
$$
, $n \ge 0$

Example 6.2

$$
(E2 + 6E + 9) y[n] = (2E2 + 6E) x[n]
$$

determine the zero-input response $y_0[n]$ if $y_0[-1] = -1/3$ and $y_0[-2] = -2/9$

Solution: the characteristic polynomial is $\gamma^2 + 6\gamma + 9 = (\gamma + 3)^2$, and we have a repeated characteristic root at $\gamma = -3$; hence, the zero-input response is

$$
y_0[n] = (c_1 + c_2 n) (-3)^n
$$

we can determine the constants c_1 and c_2 from the initial conditions:

$$
y[-1] = (c_1 - c_2)(-3)^{-1} = -1/3
$$

$$
y[-2] = (c_1 - 2c_2)(-3)^{-2} = -2/9
$$

solving we get $c_1 = 4$ and $c_2 = 3$; hence

$$
y_0[n] = (4+3n)(-3)^n \quad n \ge 0
$$

Complex roots

for difference eq. with real coefficients, complex roots appear as conjugates pairs:

$$
\gamma = |\gamma|e^{j\beta}
$$
 and $\gamma^* = |\gamma|e^{-j\beta}$

complex form: the zero-input response is

$$
y_0[n] = c_1 \gamma^n + c_2 (\gamma^*)^n
$$

= $c_1 |\gamma|^n e^{j\beta n} + c_2 |\gamma|^n e^{-j\beta n}$

where $c_1 = c_2^*$

real-form: let $c_1 = \frac{c}{2}$ $\frac{c}{2}e^{j\theta}$ and $c_2 = \frac{c}{2}$ $\frac{c}{2}e^{-j\theta},$ then we can write output as $y_0[n] = c |\gamma|^n \cos(\beta n + \theta)$

where c and θ are constants determined from the auxiliary conditions

 z ero-input response \S \sim 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 5.4 $\,$ \sim 5.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9 $\,$ 6.9

Example 6.3

$$
(E2 - 1.56E + 0.81) y[n] = (E + 3)x[n]
$$

determine the zero-input response $y_0[n]$ if $y_0[-1] = 2$ and $y_0[-2] = 1$

Solution: the characteristic equation is $(\gamma^2 - 1.56\gamma + 0.81) = 0$ and the characteristic roots are $0.78 \pm j 0.45 = 0.9 e^{\pm j (\pi/6)}$; so the complex form solution:

$$
y_0[n] = c(0.9)^n e^{j\pi n/6} + c^*(0.9)^n e^{-j\pi n/6}
$$

using the initial conditions $y_0[-1] = 2$ and $y_0[-2] = 1$, we find

$$
c = 1.1550 - j0.2025 = 1.1726e^{-j0.1735}
$$

$$
c^* = 1.1550 + j0.2025 = 1.1726e^{j0.1735}
$$

hence

$$
y_0[n] = 1.1726e^{-j0.1735}(0.9)^n e^{j\pi n/6} + 1.1726e^{j0.1735}(0.9)^n e^{-j\pi n/6}
$$

we can also find $y_0[n]$ using the real form of the solution; since $\gamma = 0.9 e^{\pm j(\pi/6)},$ we have $|\gamma| = 0.9$ and $\beta = \pi/6$, and the real-form zero-input response is

$$
y_0[n] = c(0.9)^n \cos(\frac{\pi}{6}n + \theta)
$$

to determine the constants c and θ , we use the initial conditions:

$$
y_0[-1] = \frac{c}{0.9} \cos(-\frac{\pi}{6} + \theta) = \frac{\sqrt{3}}{1.8} c \cos \theta + \frac{1}{1.8} c \sin \theta = 2
$$

$$
y_0[-2] = \frac{c}{(0.9)^2} \cos(-\frac{\pi}{3} + \theta) = \frac{1}{1.62} c \cos \theta + \frac{\sqrt{3}}{1.62} c \sin \theta = 1
$$

solving gives $c \cos \theta = 2.308$ and $c \sin \theta = -0.397$; hence

$$
\tan \theta = \frac{c \sin \theta}{c \cos \theta} = \frac{-0.397}{2.308} = -0.172, \qquad \theta = \tan^{-1}(-0.172) = -0.17 \text{ rad}
$$

substituting $\theta = -0.17$ radian in $c \cos \theta = 2.308$ yields $c = 2.34$ and

$$
y_0[n] = 2.34(0.9)^n \cos(\frac{\pi}{6}n - 0.17)
$$
 $n \ge 0$

Finding zero-input response iteratively using MATLAB

use MATLAB to iteratively compute and then plot the zero-input response for

$$
(E2 - 1.56E + 0.81)y[n] = (E + 3)x[n] \text{ with } y[-1] = 2 \text{ and } y[-2] = 1
$$

n = (-2:20)'; y = [1;2;zeros(length(n)-2,1)];
for k = 1:length(n)-2,
y(k+2) = 1.56*y(k+1)-0.81*y(k);
end;
clf; stem(n,y,'k'); xlabel('n'); ylabel('y[n]');
axis([-2 20 -1.5 2.5]);

Outline

- • [zero-input response](#page-1-0)
- **[unit-impulse response](#page-12-0)**
- [zero-state response and convolution](#page-22-0)
- [system stability](#page-48-0)

Impulse response

- **•** the (unit) *impulse response* $h[n]$ is output of the system when the input is $\delta[n]$ with zero initial conditions
- an LTI system is causal if and only if $h[n] = 0$ for $n < 0$

Linear difference system

$$
\underbrace{(E^N + a_1 E^{N-1} + \dots + a_{N-1} E + a_N)}_{Q[E]}
$$
\n
$$
= \underbrace{(b_0 E^N + b_1 E^{N-1} + \dots + b_{N-1} E + b_N)}_{P[E]}
$$
\n
$$
P[E]
$$

the impulse response $h[n]$ to the above difference system satisfies:

- \bullet $O[E]h[n] = P[E]\delta[n]$
- subject to initial conditions

$$
h[-1] = h[-2] = \cdots = h[-N] = 0
$$

Example 6.4

iteratively compute the first two values of the impulse response $h[n]$ of:

$$
y[n]-0.6y[n-1]-0.16y[n-2]=5x[n]\,
$$

Solution: letting the input $x[n] = \delta[n]$ and the output $y[n] = h[n]$, we have

$$
h[n] = 0.6h[n-1] + 0.16h[n-2] + 5\delta[n]
$$

let $h[-1] = h[-2] = 0$; setting $n = 0$ in this equation yields

$$
h[0] = 0.6(0) + 0.16(0) + 5(1) = 5
$$

setting $n = 1$ in the same equation and using $h[0] = 5$, we obtain

$$
h[1] = 0.6(5) + 0.16(0) + 5(0) = 3
$$

continuing this way, we can determine any number of terms of $h[n]$

[unit-impulse response](#page-12-0) $\begin{array}{ccc} 6.14 & 6.14 \end{array}$

Closed form expression

$$
(EN + a1EN-1 + \dots + aN-1E + aN)y[n]
$$

= (b₀E^N + b₁E^{N-1} + \dots + b_{N-1}E + b_N)x[n]

the impulse response with $a_N \neq 0$ can be expressed as

$$
h[n] = A_0 \delta[n] + y_c[n] u[n]
$$

$$
A_0 = b_N/a_N \text{ (assuming } a_N \neq 0\text{)}
$$

- $y_c[n]$ is a linear combination of the characteristic modes
	- for unrepeated roots $y_c[n] = c_1 \gamma_1^n + \cdots + c_N \gamma_N^n$
	- repeated roots has form as in page [6.5](#page-0-0)
- to find c_1, \ldots, c_N , we need to compute N values $h[0], h[1], \ldots, h[N-1]$ iteratively

Finding A_0 : substituting $h[n]$ into our equation, we obtain

$$
Q[E](A_0\delta[n] + y_c[n]u[n]) = P[E]\delta[n]
$$

since $y_c[n]$ is made up of characteristic modes, $Q[E] y_c[n] = 0$; hence

$$
A_0 \left(\delta[n+N] + a_1 \delta[n+N-1] + \cdots + a_N \delta[n] \right) = b_0 \delta[n+N] + \cdots + b_N \delta[n]
$$

setting $n = 0$ and using $\delta[m] = 0$ for all $m \neq 0$, and $\delta[0] = 1$, we obtain

$$
A_0 a_N = b_N \quad \Longrightarrow \quad A_0 = \frac{b_N}{a_N} \quad \text{(assuming } a_N \neq 0\text{)}
$$

Example 6.5

determine the unit impulse response $h[n]$ for a system specified by the equation

$$
y[n] - 0.6y[n-1] - 0.16y[n-2] = 5x[n]
$$

Solution: this equation can be expressed in the advance form as

$$
y[n+2] - 0.6y[n+1] - 0.16y[n] = 5x[n+2]
$$

or in advance operator form as

$$
(E2 - 0.6E - 0.16) y[n] = 5E2 x[n]
$$

the characteristic polynomial is

$$
\gamma^2 - 0.6\gamma - 0.16 = (\gamma + 0.2)(\gamma - 0.8)
$$

the characteristic modes are $(-0.2)^n$ and $(0.8)^n$; therefore,

$$
y_c[n] = c_1(-0.2)^n + c_2(0.8)^n
$$

by inspection, we see that $a_N = -0.16$ and $b_N = 0$; hence

$$
h[n] = [c_1(-0.2)^n + c_2(0.8)^n]u[n]
$$

to determine c_1 and c_2 , we need to find two values of $h[n]$ iteratively; from the example in page [6.14](#page-0-0), we know that $h[0] = 5$ and $h[1] = 3$; hence

$$
h[0] = 5 = c_1 + c_2
$$

\n
$$
h[1] = 3 = -0.2c_1 + 0.8c_2
$$

$$
\implies c_1 = 1
$$

\n
$$
c_2 = 4
$$

therefore,

$$
h[n] = [(-0.2)^n + 4(0.8)^n] u[n]
$$

Other cases

when $a_N = 0$ and $a_{N-1} \neq 0$, then

$$
h[n] = A_0 \delta[n] + A_1 \delta[n-1] + y_c[n]u[n]
$$

- $y_c[n]$ contains the characteristic terms of $\hat{Q}[\gamma] = Q[\gamma]/\gamma$
- unknowns $A_0, A_1, c_1, c_2, \ldots$ are found from $N+1$ values $h[0], h[1], \ldots, h[N]$

when $a_N = a_{N-1} = 0$ and $a_{N-2} \neq 0$, then

$$
h[n] = A_0 \delta[n] + A_1 \delta[n-1] + A_2 \delta[n-2] + y_c[n] u[n]
$$

- $\bullet \ \ y_{c}\left[n\right]$ contains the characteristic terms of $\hat{Q}[\gamma]=Q[\gamma]/\gamma^{2}$
- **unknowns** A_0 , A_1 , A_2 , c_1 , c_2 ... are found from $N + 1$ values $h[0], \ldots, h[N]$

...etc

Example 6.6

determine the impulse response $h[n]$ of a system described by the equation

$$
(E^3 + E^2)y[n] = x[n]
$$

Solution: in this case, $a_N = a_{N-1} = 0$, and the characteristic roots: one at -1 and two at 0; only the nonzero characteristic root shows up in $y_c[n]$, so

$$
h[n] = A_0 \delta[n] + A_1 \delta[n-1] + A_2 \delta[n-2] + c_1 (-1)^n u[n]
$$

to determine the coefficients A_0, A_1, A_2 , and c_1 , we require $N + 1 = 4$ values of $h[n](n \geq 0)$, which we obtain iteratively using Matlab:

```
n = (-3:3); delta = (n == 0); h = zeros(size(n));
for ind = find(n>=0)h(ind) = -h(ind-1) + delta(ind-3);end
h(n)=0)
```
[output: ans = 0 0 0 1] using these values to solve for the constants, we get

$$
h[n] = \delta[n] - \delta[n-1] + \delta[n-2] - (-1)^n u[n]
$$

Finding impulse response using MATLAB

filter command can be used in MATLAB to solve find the impulse response

Example:
$$
y[n] - 0.6y[n-1] - 0.16y[n-2] = 5x[n]
$$
 with $x[n] = \delta[n]$

n = (0:19); delta = @(n) 1.0.*(n==0); a = [1 -0.6 -0.16]; b = [5 0 0]; h = filter(b,a,delta(n)); clf; stem(n,h,'k'); xlabel('n'); ylabel('h[n]');

Outline

- • [zero-input response](#page-1-0)
- [unit-impulse response](#page-12-0)
- **[zero-state response and convolution](#page-22-0)**
- [system stability](#page-48-0)

Derivation of zero-state response

we can express any arbitrary input $x[n]$ as a sum of impulse components:

$$
x[n] = x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots
$$

+ x[-1]\delta[n+1] + x[-2]\delta[n+2] + \cdots
=
$$
\sum_{m=-\infty}^{\infty} x[m]\delta[n-m]
$$

let $h[n]$ be the system response to impulse input $\delta[n]$ ($\delta[n] \implies h[n]$), then due to linearity and time invariance

$$
x[n] = \sum_{m=-\infty}^{\infty} x[m]\delta[n-m] \Longrightarrow \underbrace{\sum_{m=-\infty}^{\infty} x[m]h[n-m]}_{y[n]}
$$

the right-hand side is the system response $y[n]$ to input $x[n]$

Zero-state response and convolution

the zero-state response is:

$$
y[n] = x[n] * h[n-m] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]
$$

- **■** the summation is known as the *convolution sum of* $x[n]$ and $h[n]$
- for causal input and system $(h[k] = x[k] = 0$ for $k < 0$), we have

$$
y[n] = \sum_{m=0}^{n} x[m]h[n-m]
$$

Example 6.7

determine $y[n] = x[n] * h[n]$ analytically for

$$
x[n] = (0.8)^n u[n]
$$
 and $h[n] = (0.3)^n u[n]$

Solution: note that $x[m] = (0.8)^m u[m]$ and $h[n-m] = (0.3)^{n-m} u[n-m]$ both $x[n]$ and $h[n]$ are causal, thus

$$
y[n] = \sum_{m=0}^{n} x[m]h[n-m] = \sum_{m=0}^{n} (0.8)^m u[m] (0.3)^{n-m} u[n-m]
$$

=
$$
\begin{cases} \sum_{m=0}^{n} (0.8)^m (0.3)^{n-m} & n \ge 0\\ 0 & n < 0 \end{cases}
$$

$$
y[n] = (0.3)^n \sum_{m=0}^{n} (0.8/0.3)^m u[n] = (0.3)^n \frac{1 - (0.8/0.3)^{n+1}}{1 - (0.8/0.3)} u[n]
$$

$$
= 2 [(0.8)^{n+1} - (0.3)^{n+1}] u[n]
$$

Properties of convolution sum

Commutative

$$
x_1[n]*x_2[n]=x_2[n]*x_1[n]
$$

Distributive

$$
x_1[n] * (x_2[n] + x_3[n]) = x_1[n] * x_2[n] + x_1[n] * x_3[n]
$$

Associative

$$
x_1[n] * (x_2[n] * x_3[n]) = (x_1[n] * x_2[n]) * x_3[n]
$$

Shifting: if $x_1[n] * x_2[n] = y[n]$ then

$$
x_1[n-m]*x_2[n-p] = y[n-m-p]
$$

Convolution with an Impulse

$$
x[n]*A\delta[n-n_0]=Ax[n-n_0]
$$

[zero-state response and convolution](#page-22-0) and convolution SA — EE312 6.25

Differencing: if $y[n] = x_1[n] * x_2[n]$ then

$$
y[n] - y[n-1] = x_1[n] * (x_2[n] - x_2[n-1])
$$

Summation: if $y[n] = x_1[n] * x_2[n]$ then

$$
\sum_{n=-\infty}^{\infty} y[n] = \left(\sum_{n=-\infty}^{\infty} x_1[n]\right) \times \left(\sum_{n=-\infty}^{\infty} x_2[n]\right)
$$

Length: $x_1[n] * x_2[n]$ has length $L_1 + L_2 - 1$ with L_1, L_2 lengths of $x_1[n], x_2[n]$ **Width**

- the *width* of a signal is the number of its elements (length) minus one
- width of $x_1[n] * x_2[n]$ is $W_1 + W_2$ where W_1, W_2 are widths of $x_1[n], x_2[n]$
	- let n_1 and n_2 be the starting point where $x_1[n]$ and $x_2[n]$ has nonzero value

$$
- x_1[n] * x_2[n]
$$
 starts from $n_1 + n_2$

-
$$
x_1[n] * x_2[n]
$$
 ends at $n_1 + n_2 + W_1 + W_2$

Example 6.8 (convolution from table)

- many convolution sums can be found from already determined signal pairs (convolution table)
- we can combine these pairs with convolution properties to find more complicated convolutions

Example: use the table to find the following convolutions

(a)
$$
y_a[n] = (0.8)^n u[n] * u[n]
$$

(b) $y_b[n] = (0.8)^n u[n-1] * u[n+3]$

Solution:

(a) direct application of pair 4 from table gives

$$
y_a[n] = (0.8)^n u[n] * u[n] = \frac{0.8^{n+1} - 1}{0.8 - 1} u[n] = 5(1 - (0.8)^{n+1})u[n]
$$

(b) we have

$$
y_b[n] = (0.8)^n u[n-1] * u[n+3] = 0.8(0.8)^{n-1} u[n-1] * u[n+3]
$$

hence from shifting property

$$
y_b[n] = 0.8y_a[n+2] = 4(1 - (0.8)^{n+3})u[n+2]
$$

Graphical procedure

$$
c[n] = x[n] * g[n] = \sum_{m=-\infty}^{\infty} x[m]g[n-m]
$$

the convolution operation can be performed as follows:

- 1. we first plot $x[m]$ and $g[n-m]$ as functions of m
- 2. invert $g[m]$ about the vertical axis $(m = 0)$ to obtain $g[-m]$
- 3. shift $g[-m]$ by *n* units to obtain $g[n-m]$
	- for $n > 0$, the shift is to the right (delay)
	- for $n < 0$, the shift is to the left (advance)
- 4. multiply $x[m]$ and $g[n-m]$ and add all the products to obtain $c[n]$

(the procedure is repeated for each value of *n* over the range $-\infty$ to ∞)

Example 6.9

find $c[n] = x[n] * g[n]$, where

Solution: note that

- for $n < 0$, there is no overlap, so that $c[n] = 0$ for $n < 0$
- for $n \geq 0$, the two functions overlap over the interval $0 \leq m \leq n$:

$$
c[n] = \sum_{m=0}^{n} x[m]g[n-m] = \sum_{m=0}^{n} (0.8)^m (0.3)^{n-m} = (0.3)^n \sum_{m=0}^{n} (\frac{0.8}{0.3})^m
$$

= 2[(0.8)^{n+1} - (0.3)^{n+1}] n \ge 0

combining pieces, we see that

Example 6.10: Sliding-tape method

this examples illustrates how to use the sliding-tape method to find $x[n] * g[n]$ for the signals shown below

Solution: in this procedure we represent the sequences $x[m]$ and $g[m]$ as tapes; we then get the $g[-m]$ tape by inverting the $g[m]$ tape about the origin $(m = 0)$

we now shift the inverted tape by n slots, multiply values on two tapes in adjacent slots, and add all the products to find $c[n]$

$$
c[0] = (-2 \times 1) + (-1 \times 1) + (0 \times 1) = -3
$$

\n
$$
c[1] = (-2 \times 1) + (-1 \times 1) + (0 \times 1) + (1 \times 1) = -2
$$

\n
$$
c[2] = (-2 \times 1) + (-1 \times 1) + (0 \times 1) + (1 \times 1) + (2 \times 1) = 0
$$

\n
$$
c[3] = (-2 \times 1) + (-1 \times 1) + (0 \times 1) + (1 \times 1) + (2 \times 1) + (3 \times 1) = 3
$$

\n
$$
c[4] = (-2 \times 1) + (-1 \times 1) + (0 \times 1) + (1 \times 1) + (2 \times 1) + (3 \times 1) + (4 \times 1) = 7
$$

\n
$$
c[5] = (-2 \times 1) + (-1 \times 1) + (0 \times 1) + (1 \times 1) + (2 \times 1) + (3 \times 1) + (4 \times 1) = 7
$$

\n
$$
c[n] = 7 \quad n \ge 4
$$

similarly, we compute $c[n]$ for negative *n* by sliding the tape backward:

$$
c[-1] = (-2 \times 1) + (-1 \times 1) = -3
$$

\n
$$
c[-2] = (-2 \times 1) = -2
$$

\n
$$
c[-3] = 0
$$

\n
$$
c[n] = 0 \quad n \le -4
$$

Discrete-time convolution using MATLAB


```
x = [0 1 2 3 2 1]; g = [1 1 1 1 1 1];n = (0:1:length(x)+length(g)-2);c = \text{conv}(x, g);
clf; stem(n,c,'k'); xlabel('n'); ylabel('c[n]');
axis([-0.5 10.5 0 10]);
```


Finding the zero-state response using MATLAB

```
MATLAB filter can be used to find the zero-state response
Example: (E^2 + 0.5E - 1)y[n] = (2E^2 + 6E)x[n] with input x[n] = 4^{-n}u[n]n = (0:11); x = \mathbb{Q}(n) 4.^(-n).*(n>=0);a = [1 \ 0.5 -1]; b = [2 \ 6 \ 0]; y = filter(b,a,x(n));clf; stem(n,y,'k'); xlabel('n'); ylabel('y[n]');
axis([-0.5 11.5 -20 25]);
```


although the input is bounded and quickly decays to zero, the system itself is unstable and an unbounded output results

Polynomial product and convolution

if $a[n]$ and $b[n]$ are the coefficients of polynomials

$$
p(s) = a[0] + a[1]s + \dots + a[N-1]s^{N-1}
$$

$$
q(s) = b[0] + b[1]s + \dots + b[M-1]s^{M-1}
$$

then $c[n] = a[n] * b[n]$ gives the coefficients of the product polynomial

$$
p(s)q(s) = c[0] + c[1]s + c[2]s2 + \cdots + c[N + M - 2]s^{N+M-2}
$$

Example: the coefficient of $(s + 1)(s + 2)^2$ can be found by

 $[1, 1] * ([1, 2] * [1, 2])$

in MATLAB

```
>>[conv([1 1],conv([1 2],[1 2]))]
ans = 4 8 5 1
```
hence $(s + 1)(s + 2)^2 = 4 + 8s + 5s^2 + s^3$

Interconnected systems

Parallel systems

Cascade systems

because $h_1[n] * h_2[n] = h_2[n] * h_1[n]$, linear systems commute; hence, we can interchange the order of cascade systems without affecting the final result

Example:

$$
\blacksquare
$$
 if $x[n] \Longrightarrow y[n]$, then $\sum_{k=-\infty}^{n} x[k] \Longrightarrow \sum_{k=-\infty}^{n} y[k]$

$$
\bullet \text{ if } x[n] = \delta[n] \text{ then } y[n] = h[n] \text{ and } \sum_{k=-\infty}^{n} x[k] = u[n]
$$

Unit-step response:

$$
g[n] = \sum_{k=-\infty}^{n} h[k]
$$

it also holds that

$$
h[n] = g[n] - g[n-1]
$$

Inverse systems

the cascade of a system $h[n]$ with its inverse $h_i[n]$ is an identity system

 $h[n] * h_i[n] = \delta[n]$

Example: the accumulator system $y[n] = \sum_{k=-\infty}^{n} x[k]$ and the backward difference system $y[n] = x[n] - x[n-1]$ are the inverse of each other

to see this, note that the impulse response of the accumulator and backward difference systems are is

$$
h_{\text{acc}}[n] = \sum_{k=-\infty}^{n} \delta[k] = u[n] \text{ and } h_{\text{bdf}}[n] = \delta[n] - \delta[n-1]
$$

we can verify that

$$
h_{\rm acc}*h_{\rm bdf}=u[n]*\{\delta[n]-\delta[n-1]\}=u[n]-u[n-1]=\delta[n]
$$

Example 6.11 (total response)

total response of LTID system =
$$
ZIR + x[n] * h[n]
$$

 zSR

find the output of the system described by the equation

$$
y[n+2] - 0.6y[n+1] - 0.16y[n] = 5x[n+2]
$$

with initial conditions $y[-1] = 0, y[-2] = 25/4$ and input $x[n] = (4)^{-n}u[n]$

Solution: from slides [6.6](#page-0-0) and [6.17](#page-0-0) , we know that zero-input response and impulse response are

$$
y_0[n] = 0.2(-0.2)^n + 0.8(0.8)^n
$$

$$
h[n] = [(-0.2)^n + 4(0.8)^n] u[n]
$$

the zero-state response is:

$$
y[n] = x[n] * h[n]
$$

= (0.25)ⁿu[n] * [(-0.2)ⁿu[n] + 4(0.8)ⁿu[n]
= (0.25)ⁿu[n] * (-0.2)ⁿu[n] + (0.25)ⁿu[n] * 4(0.8)ⁿu[n]

using pair 4 of convolution table, we get

$$
y[n] = \left[\frac{(0.25)^{n+1} - (-0.2)^{n+1}}{0.25 - (-0.2)} + 4 \frac{(0.25)^{n+1} - (0.8)^{n+1}}{0.25 - 0.8} \right] u[n]
$$

= $(2.22 \left[(0.25)^{n+1} - (-0.2)^{n+1} \right] - 7.27 \left[(0.25)^{n+1} - (0.8)^{n+1} \right]) u[n]$
= $[-1.26(0.25)^n + 0.444(-0.2)^n + 5.81(0.8)^n] u[n]$

therefore, the total response for $n \geq 0$ is

total response =
$$
\underbrace{0.2(-0.2)^n + 0.8(0.8)^n}_{\text{ZIP}} + \underbrace{0.444(-0.2)^n + 5.81(0.8)^n - 1.26(4)^{-n}}_{\text{ZIP}}
$$

ZIR

ZSR

Natural and forced response

- when all the characteristic mode terms in the total response are lumped together, the resulting component is the *natural response*
- the remaining part of the total response that is made up of noncharacteristic modes is the *forced response*

Example: the characteristic modes of the previous system are $(-0.2)^n$ and $(0.8)^n$; hence

total response =
$$
0.644(-0.2)^n + 6.61(0.8)^n - 1.26(4)^{-n}
$$
 $n \ge 0$

natural response

forced response

just like differential equations, the classical solution to difference equations includes the natural and forced responses

Finding total response using MATLAB

filter and filtic commands provides an efficient way to find the response of

$$
\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{N} b_k x[n-k]
$$

Example: we can solve

$$
y[n] - y[n-1] + y[n-2] = x[n]
$$

when $x[n] = \cos(2\pi n/6)u[n]$ and $y[-2] = 2$, $y[-1] = 1$ using the commands

b = [1 0 0]; a = [1 -1 1]; n = (0:30)'; x = @(n) cos(2*pi*n/6).*(n>=0); z_i = filtic(b,a,[1 2]); % needed only for initial conditions y = filter(b,a,x(n),z_i); % y = filter(b,a,x(n)); for zero i.c. clf; stem(n,y,'k'); axis([-.5 30.5 -1.1 1.1]); xlabel('n'); ylabel('y[n]');

Outline

- • [zero-input response](#page-1-0)
- [unit-impulse response](#page-12-0)
- [zero-state response and convolution](#page-22-0)
- **[system stability](#page-48-0)**

BIBO stability

- a system is BIBO stable if every bounded input results in a bounded output
- **a** an LTID system is BIBO stable if and only if there exists a K such that

$$
\sum_{n=-\infty}^{\infty} |h[n]| < K < \infty
$$

proof: note that

$$
|y[n]| = \left|\sum_{m=-\infty}^{\infty} h[m]x[n-m]\right| \le \sum_{m=-\infty}^{\infty} |h[m]| |x[n-m]|
$$

if $x[n]$ is bounded, then $|x[n-m]| < K_0 < \infty$, and

$$
|y[n]| \le K_0 \sum_{m=-\infty}^{\infty} |h[m]|
$$

clearly the output is bounded if $\sum_{m=-\infty}^\infty |h[m]|$ is bounded

[system stability](#page-48-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$

Internal stability

for LTID systems, internal stability (asymptotical stability or the zero-input stability), is defined in terms of the zero-input response of a system

an LTID system is

- 1. *asymptotically stable* if, and only if, all the characteristic roots are inside the unit circle (the roots may be simple or repeated)
- 2. *marginally stable* if and only if there are no roots outside the unit circle and there are some unrepeated roots on the unit circle
- 3. *unstable* if, and only if, either one or both of the following conditions exist:
	- (i) at least one root is outside the unit circle
	- (ii) there are repeated roots on the unit circle

if
$$
|\gamma| < 1
$$
, then $\gamma^n \to 0$ as $n \to \infty$
\nif $|\gamma| > 1$, then $\gamma^n \to \infty$ as $n \to \infty$
\nif $|\gamma| = 1$, then $|\gamma|^n = 1$ for all *n*

Relation with BIBO stability

- an asymptotically stable system is BIBO-stable
- converse not true; BIBO stability does not ensure asymptotic stability
- marginal stability or asymptotic instability implies that the system is BIBO-unstable

Example 6.12

an LTID systems consists of two subsystems S_1 and S_2 in cascade

the impulse response of these systems are

 $h_1[n] = 4\delta[n] - 3(0.5)^n u[n]$ and $h_2[n] = 2^n u[n]$

investigate the BIBO and asymptotic stability of the composite system

Solution: the composite system impulse response $h[n]$ is given by

$$
h[n] = h_1[n] * h_2[n] = h_2[n] * h_1[n] = 2^n u[n] * (4\delta[n] - 3(0.5)^n u[n])
$$

= 4(2)ⁿu[n] - 3 $\left[\frac{2^{n+1} - (0.5)^{n+1}}{2 - 0.5} \right] u[n]$
= (0.5)ⁿu[n]

- **■** the system is BIBO-stable because $h[n] = (0.5)^n u[n]$ is absolutely summable
- S_2 is unstable because its characteristic root, 2, lies outside the unit circle
- thus total system is asymptotically unstable
- this shows that BIBO stability does not necessarily ensure asymptotic stability

Example 6.13

determine the internal and external stability of systems specified by the following equations; in each case plot the characteristic roots in the complex plane

(a)
$$
y[n+2] + 2.5y[n+1] + y[n] = x[n+1] - 2x[n]
$$

\n(b) $y[n] - y[n-1] + 0.21y[n-2] = 2x[n-1] + 3x[n-2]$
\n(c) $y[n+3] + 2y[n+2] + \frac{3}{2}y[n+1] + \frac{1}{2}y[n] = x[n+1]$
\n(d) $(E^2 - E + 1)^2 y[n] = (3E + 1)x[n]$

Solution:

- (a) the characteristic polynomial is $\gamma^2 + 2.5\gamma + 1 = (\gamma + 0.5)(\gamma + 2)$ and the characteristic roots are -0.5 and -2 ; -2 lies outside the unit circle), so the system is BIBO-unstable and also asymptotically unstable
- (b) the characteristic polynomial is $\gamma^2 \gamma + 0.21 = (\gamma 0.3)(\gamma 0.7)$ and the characteristic roots are 0.3 and 0.7, both of which lie inside the unit circle; the system is BIBO-stable and asymptotically stable
- (c) the characteristic polynomial is $\gamma^3 + 2\gamma^2 + \frac{3}{2}\gamma + \frac{1}{2} = (\gamma + 1)(\gamma^2 + \gamma + \frac{1}{2}) = (\gamma + 1)(\gamma + 0.5 - j0.5)(\gamma + 0.5 + j0.5)$

the characteristic roots are $-1, -0.5 \pm j0.5$; one of the characteristic roots is on the unit circle and the remaining two roots are inside the unit circle; the system is BIBO-unstable but marginally stable

(d) the characteristic polynomial is

$$
(\gamma^{2} - \gamma + 1)^{2} = \left(\gamma - \frac{1}{2} - j\frac{\sqrt{3}}{2}\right)^{2} \left(\gamma - \frac{1}{2} + j\frac{\sqrt{3}}{2}\right)^{2}
$$

the characteristic roots are $(1/2) \pm j(\sqrt{3}/2) = 1e^{\pm j(\pi/3)}$ repeated twice, and they lie on the unit circle; the system is BIBO-unstable and asymptotically unstable

References

- ■ B.P. Lathi, *Linear Systems and Signals*, Oxford University Press.
- M. J. Roberts, *Signals and Systems: Analysis Using Transform Methods and MATLAB*, McGraw Hill.