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Discrete-time signals
a discrete-time (DT) signal is a function defined over an integer variable
x[n] where ne{...,-1,0,1,...}

= asequence of numbers ..., x[-1],x[0],x[1],...

= a CT signal x(¢) can discretized by sampling it x[n] = x(¢,,) over discrete
instants {¢t,},n=0,1,2,...

= examples:
x[n] x[n] x[n]
n
n n
stock market weekly average samples from exponentially
daily averages tempratures damped sinusoid
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Uniform sampling
uniform sampling a continuous-time signal x(¢) gives a DT signal:
x[n] = x(nT)
= 1 is an integer
» T is sampling period or sampling interval

x[n] | or x(nT)

p

[Ttorg -
-2 1 5 10 . n—e
—or |7 ST 107 1 —=
Example: sampling x(1) = e with T = 0.1:
x[n] = e = 7011 n=...,-2,-1,0,1,2,...

DT signals
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Causal and periodic signals

Causal signals: x[n] is causalif x[n] = 0forn < 0
» asignal x[n] is anticausalif x[n] =0, n > 0

= a signal that has values before n = 0 is called noncausal

Periodic signals: a signal x[n] is periodic if for some positive constant N:

x[n] =x[n+ N], foralln

» fundamental period N is the smallest N such that the above holds
» fund. frequency is Fy = 1/Ny cycles/sample and Qq = 27/ N rad/sample

= a periodic signal must start at n = —co and continue forever
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Discrete-time sinusoid

Acos(Qn+60) = Acos(2nFn + 0)

= A is the amplitude, 0 is the phase in radians
» frequency €2 has dimension radians per sample
» F = Q/27 with dimension cycles (radians/2n) per sample

= uniform sampling of x(¢) = cos wt with sampling rate 7' seconds gives
x[n] = cos(wnT) = cos(Qn) where Q=T
» DT sinsuoids are not necessarily periodic

Periodicity of DT sinusoid: cos(Qn) = cos(2nFn) is periodic if QN = 27m for
some non-zero integers m and N

» implies DT sinusoid is periodic if F = m/N is a rational number

= if F =mg/Ny expressed in simplest form, then Ny is the fundamental period
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Examples

sin2nFn), F=1/16 sin(2nFn), F=2/16
x[n] tundamental period is 16 x[n]  fundamental period is 8
1 1
n n
-1 -1
(a) (b)
sin@nFn), F=11/16 sin(2nFn), F=mn/16
x[n] fundamental period is 16 x[n] aperiodic
1 1
n n
-1 -1
(© (d)
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Sum periodic signals

the sum of periodic DT signals is always periodic
» let x1 [n] and x5 [1] be periodic with fundamental periods N1 and N2 and
x[n] = x1[n] +x2[n]
= x[n] is periodic and the fundamental period is:
No = LCM(No1, No2) = gNo1 = pNoz2
where Ng1/Ng2 = p/q for some integers p and ¢ in smallest form

Example:
x[n] = 2cos(9nn/4) — 3sin(67n/5)

we can write the function as
x[n] = 2cos(27(9/8)n) — 3sin(27(3/5)n)
we have Ng; = 8 and Ny = 5; hence x[n] is periodic and Ng = LCM(8, 5) = 40
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4.7



Discrete-time exponential

the discrete-time exponential function is

= can be expressed in usual form y" = e where y = ¢*

= for discrete-time signals, y" is preferred over e

Complex exponential: for complex y = rel? we get

x[n] = r"e/* = " (cos Qn + j sin Qn)

= the frequency is |Q]
= the angle is nQ

= in complex plane, e/ is a point on a unit circle at an angle Qn

DT signals
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Nature of y"

for A = a + jb, we have e = y" where

y=el= e“e’’  and ly| = le?]|e’?] = e*

Nature of ¢!
= e grows exponentially with 7 if Re 2 > 0 (1 in RHP)
» eV decays exponentially with 72 if Re 4 < 0 (1 in LHP)

e/ln

" constant or oscillate if Re 4 = 0 (1 on imaginary axis)

Nature of y"

= " grows exponentially with n if |y| > 1 (y outside unit circle)
= y" decays exponentially with n if |y| < 1 (v inside unit circle)

= y" is a constant or oscillate if |y| = 1 (y on unit circle)
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LHP

Exponentially decreasing

>
=
g

DT signals

Exponentially

decreasing

SA —EE312

4.10



Behavior of y” for real y

0<y<l1

1m;IIHHH

DT signals

-1<y<0
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Example: plotting DT signals in Matlab

use Matlab to plot the following signals
(@) x4[n] =(0.8)" over0<n <8
(b) xp[n] =(-0.8)"over0 <n <8
(€) xc[n] =(0.5)" over0 <n <8
(d) x4[n] =(1.1)"over0<n <8
(e) x[n] = cos({5n+7) over =30 < n < 30
stem command is used to plot DT signals

= (0:8); x_a = @(n) (0.8).7n; x_b = @(n) (-0.8)."(n);
x_c = @(n) (0.5).°n; x_d = @(n) (1.1).°n;
subplot(2,2,1); stem(n,x_a(n),’filled’,’k’); ylabel(’x_aln]’);
subplot(2,2,2); stem(n,x_b(n),’filled’,’k’); ylabel(’x_b[n]’);
subplot(2,2,3); stem(n,x_c(n),’filled’,’k’); ylabel(’x_c[n]’);
subplot(2,2,4); stem(n,x_d(n),’filled’,’k’); ylabel(’x_d[n]’);
figure

= (-30:30); x = @(n) cos(n*pi/12+pi/4);
clf; stem(n,x(n),’filled’,’k’); ylabel(’x[n]’); xlabel(’n’);

DT signals

xlabel(’n’);
xlabel(’n’);
xlabel(’n’);
xlabel(’n’);
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the signal x[n] can be time shifted to the right or left by ng > 0 units

x[n —no]

x[n+ ng]

Example:

(b)

Time-shifting

x[n]

(0.9)"

3 5

7x[n -5]

-

10

(0.9)7~°

mlml

(right-shifted (delayed) signal)
(left-shifted (advanced) signal)

20

.

—10

signal operations

(0_9)n+10 14

-7 =5

5

x[n+10]

8 10
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Time reversal

the time reversal operation x[—n] rotates x[n] about the vertical axis

Example:
x[n]
1 (0.9)"
(a) I
. . ‘ I T T T T T . .
—10 -5 3 5 10 15 20 n
x[-n]
(0.9)™" 1+
(b)
0000900009000 0900000000 —
—-10 -5 -3 0 5 10 15 20 n
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Time-reversal and shifting

the time-reversal and shifting operation is x[k — 1]

x[=(n- k)] =x[k —n]

time reverse

1. x[n]  —  x[-n]

(left) shift by k
— x[n+k]

(right) shift by k
—

2. x[n]

Example: find x[20 — n]

time reverse
—>

x[k —n]

x[n]
11 (0.9)"
(a) III [
—10 -5 0 3 5 10 15 20 n
0.9)™" *l-nl
)
asatill eeeeeeraraans
—10 5 -3 5 10 15 20 n
Jx20-nl (0.9)20-7
(c)
-10 -5 0 5 10 15 17 20 n
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Example 4.1

plot x[5 — n] for the signal x[n]

HHHH

i

x[n] = x[~n]

il !H

Li”ifHoH
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Time scale: downsampling (time compression)

downsampling is the compression of x[n] by integer factor M:
xq[n] = x[Mn]
= x[Mn] selects every Mth sample: x[0], x[M],x[2M], ...

= reduces the number of samples by factor M (loss of samples)

= if x[n] is sampled CT signal, this operation reduces sampling rate by M
Example:

x[n] X n] xqln] = x[2n]

Downsampling

| HH”HTT mh

2 4 6 8 10 12 14 16 18 20 ‘ 2 4 6 8 10
n—e n—
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Time scale: upsampling

upsampling is the expansion of x[n] by integer factor L

[n] x[n/L] n=0,+L,£2L,...
Xe[n] =
¢ 0 otherwise (n/L noninteger)

wforn=0,1,2,..., x.[n] is:

x[0],0,0,...,0,x[1],0,0,...,0,x[2],0,0,...,0,x[3],...
S———— S——— S——
L—1 zeros L—1 zeros L—1 zeros

» the sampling rate of x.[n] is L times that of x[n]

Interpolation
= the process of filling-in the zero-valued samples is called interpolation

= example: linear interpolation for L = 2, we replace the zero samples by:

xi[n] = 3 (xe[n = 1] +xe[n+1])
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Example
x[n]

S Y

l Hisiite

8 10 12 14 16 18 20
x [n] ‘
6

n—e
xi[n]

x[n] = x[%]

I

18 20 22 24 26 28 30 32 34 36 38 40

n—e

rf— o

8§ 10 1

Interpolation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

n—e
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Combined operations

x[an — b] where a and b are integers

Method 1:
time shift by b time scale by a
—> —>

x[n] x[n-b] x[an - b]

Method 2: if b/a is an integer, then x[an — b] = x[a(n — b/a)]

time scale by a time shiftby b/a
— ]

x[n x[an —>  =x[a(n—->b/a)] =x[an - b]
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Example 4.2

sketch x[—15 — 3n] for the DT signal shown below

1.4
1.2

1
0.8
0.6
0.4
0.2

0 n
-12 -10 8 -6 -4 -2 0 2 4 6 8 10 12

Solution: we write x[—15 — 3n] = x[-3(n + 5)] and follow the steps given next

signal operations



= compress x[n] by 3 to ge

t x[3n]

1.4
12

1

0.8

0.6

0.4

0.2

0
-12 -1

= time-reverse x[3n] to get
1.4

1.2

1

0.8

0.6

0.4

I

0.2

|

n

0,
-12 -10 -8 -6 -4 -2

0 2

4

6 8 10 12

 left-shift x[—3n] by 5 to obtain x[-3(n + 5)] = x[-15 — 3n]

1.4

12

1

0.8
0.6

0.4

0.2

I

[

signal operations

0
S12 10 -8 -6 —4 -2

0 2

n
6 8 10 12
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Even and odd signals

= X.[n]isevenifx.[n] =x.[-n]

» X, [n] isoddif x,[n] = —x,[—n]

even odd

il

n

il -

every signal x[n] can expressed as

. py

x[n] = 3[x[n] +x[-n]]+ 5 [x[n] = x[-n]]

even odd

signal operations
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Example 4.3

find the even and odd parts of the function, x[n] = sin(27n/7) (1 + n?)

Solution: the even part is

sin(27n/7) (1 +n?) +sin(-27n/7) (1 + (-n)?)

=0
2

xe[n] =

the odd part is

_sin(27n/7) (1 + n?) —sin(=27n/7) (1 + (-n)?)
B 2

Xo[n]
=sin(27n/7)(1 + n?)

the function is odd since the even part is zero
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Properties

Multiplications

even function X odd function = odd function
odd function X odd function = even function

even function X even function = even function

Symmetric summation of even function: for positive integer N

N N
Z x[n] =x[0] +2 Zx[n] (x[n] is even)
n=—N n=1

Symmetric summation of odd function: for positive integer N

N

> x[n]=0  (x[n]is odd)

n=—N
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Unit step and unit ramp

(discrete-time) unit-step

-, 1% A

also called unit-step sequence

(discrete-time) unit-ramp

ramp(n]
n n>0

ramp|[n] = { = nu(n]

s o

also called unit-ramp sequence ol l H g
4 8
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Unit impulse

(discrete-time) unit-impulse

1 =
5[n] = n=0 .
0 n#0

8[n]

» also called unit sample function or Kronecker delta function
= defined everywhere (unlike continuous case)

= &[n] = 6[an] for any integer a # 0

unit periodic impulse (impulse train)

i 6[n—mN]

m=—o00

Slnl
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Properties
» multiplication by DT impulse:

x[n]é6[n— k] =x[k]6[n — k]

» sampling or sifting property:

(o]

x[n] = > x[k]6[n -]

k=—00

Relation between unit step and unit impulse

n

uln] = > 6[k]

k=—0c0

o[n] =uln] —uln-1]
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Rectangular sequence

the function
uln —n1] —uln —ns]

with 1 < ng is a rectangular sequence from ny until (ny — 1)

Example:
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Example 4.4

describe the signal x[n] by a single expression valid for all n using unit-sequence

x[n]

0 5 10 n—e

Solution: there are many ways to do this; one expression is

x[n] =n(u[n] —u[n->5]) +4(u[n - 5] —u[n-11]) — 26[n — 8]
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Energy signals

Energy of signal

Eo= Y il

n=—oo

» if £, is finite, the signal is called an energy signal

= E, isfinite if [x[n]| — 0 as |n| — oo; infinite otherwise

Example: the energy of the signal x[n] = (1/2)"u[n] is
1\n|2 _ 1\2n

=BT =20

n=0

|r| < 1, we obtain

1 4
1-1/4 " 3

M
l\')h—'
0

I
NE
@

S

S
Il
o
3
Il
o

using the formula Zio =1,

E,=
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Power signals

Power of a signal

s P, is the time average (mean) of |x[n]|?, also called average power
» VP, is the rms (root-mean-square) value of x(t)

= if Py is finite and nonzero, the signal is called a power signal

Periodic signals power: a periodic signal x[n] with period Ny has power

1 1 mo+No—1
P, = N Z [x[n]|? = ~ Z [x[n]|?>  for any integer mg
N,

0 n=mo

signal energy and power
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Energy and power signals

= an energy signal has zero power
= a power signal has infinite energy
= hence, a signal cannot be both an energy signal and a power signal

= some signals are neither energy nor power signals

signal energy and power
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Example 4.5

find the energy of x[n] and the power of the periodic signal y[n] shown below

x[n]

Solution:

Po= LY =iy
y_NO n=0 ’ B n=0 _6
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Example 4.6

find the energy E, and power P, of the signal x[n] = 3 cos(nn/4)

Solution: notice that x[n] is 8-periodic and, therefore, a power signal:

7
Po= 3 Sl = 5 [23)7 + 43V
n=0

1 9
=—[18+18]===4.5
8[ ] 2
since 0 < P, < oo, we know that E, = oo

we can calculate the power in Matlab using the script:

x = @(n) 3*cos(pi*n/4); n = 0:7;
Px = sum(abs(x(n))."2)/length(x(n))

[outputis Px = 4.5000]

signal energy and power
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