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Discrete-time signals

a discrete-time (DT) signal is a function defined over an integer variable

𝑥 [𝑛] where 𝑛 ∈ {. . . ,−1, 0, 1, . . .}

■ a sequence of numbers . . . , 𝑥 [−1], 𝑥 [0], 𝑥 [1], . . .

■ a CT signal 𝑥(𝑡) can discretized by sampling it 𝑥 [𝑛] = 𝑥(𝑡𝑛) over discrete
instants {𝑡𝑛}, 𝑛 = 0, 1, 2, . . .

■ examples:

𝑥 [𝑛] 𝑥 [𝑛] 𝑥 [𝑛]

stock market
daily averages

weekly average
tempratures

samples from exponentially
damped sinusoid
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Uniform sampling

uniform sampling a continuous-time signal 𝑥(𝑡) gives a DT signal:

𝑥 [𝑛] = 𝑥(𝑛𝑇)

■ 𝑛 is an integer

■ 𝑇 is sampling period or sampling interval

Example: sampling 𝑥(𝑡) = 𝑒−𝑡 with 𝑇 = 0.1:

𝑥 [𝑛] = 𝑒−𝑛𝑇 = 𝑒−0.1𝑛 𝑛 = . . . ,−2,−1, 0, 1, 2, . . .
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Causal and periodic signals

Causal signals: 𝑥 [𝑛] is causal if 𝑥 [𝑛] = 0 for 𝑛 < 0

■ a signal 𝑥 [𝑛] is anticausal if 𝑥 [𝑛] = 0, 𝑛 ≥ 0

■ a signal that has values before 𝑛 = 0 is called noncausal

Periodic signals: a signal 𝑥 [𝑛] is periodic if for some positive constant 𝑁 :

𝑥 [𝑛] = 𝑥 [𝑛 + 𝑁], for all 𝑛

■ fundamental period 𝑁0 is the smallest 𝑁 such that the above holds

■ fund. frequency is 𝐹0 = 1/𝑁0 cycles/sample and Ω0 = 2𝜋/𝑁0 rad/sample

■ a periodic signal must start at 𝑛 = −∞ and continue forever
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Discrete-time sinusoid

𝐴 cos(Ω𝑛 + 𝜃) = 𝐴 cos(2𝜋𝐹𝑛 + 𝜃)

■ 𝐴 is the amplitude, 𝜃 is the phase in radians

■ frequency Ω has dimension radians per sample

■ 𝐹 = Ω/2𝜋 with dimension cycles (radians/2𝜋) per sample

■ uniform sampling of 𝑥(𝑡) = cos𝜔𝑡 with sampling rate 𝑇 seconds gives

𝑥 [𝑛] = cos(𝜔𝑛𝑇) = cos(Ω𝑛) where Ω = 𝜔𝑇

■ DT sinsuoids are not necessarily periodic

Periodicity of DT sinusoid: cos(Ω𝑛) = cos(2𝜋𝐹𝑛) is periodic if Ω𝑁 = 2𝜋𝑚 for
some non-zero integers 𝑚 and 𝑁

■ implies DT sinusoid is periodic if 𝐹 = 𝑚/𝑁 is a rational number

■ if 𝐹 = 𝑚0/𝑁0 expressed in simplest form, then 𝑁0 is the fundamental period
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Examples

𝑥 [𝑛] fundamental period is 16 𝑥 [𝑛]

𝑥 [𝑛]𝑥 [𝑛]

fundamental period is 8

fundamental period is 16 aperiodic
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Sum periodic signals

the sum of periodic DT signals is always periodic

■ let 𝑥1 [𝑛] and 𝑥2 [𝑛] be periodic with fundamental periods 𝑁01 and 𝑁02 and

𝑥 [𝑛] = 𝑥1 [𝑛] + 𝑥2 [𝑛]

■ 𝑥 [𝑛] is periodic and the fundamental period is:

𝑁0 = LCM(𝑁01, 𝑁02) = 𝑞𝑁01 = 𝑝𝑁02

where 𝑁01/𝑁02 = 𝑝/𝑞 for some integers 𝑝 and 𝑞 in smallest form

Example:
𝑥 [𝑛] = 2 cos(9𝜋𝑛/4) − 3 sin(6𝜋𝑛/5)

we can write the function as

𝑥 [𝑛] = 2 cos(2𝜋(9/8)𝑛) − 3 sin(2𝜋(3/5)𝑛)

we have 𝑁01 = 8 and 𝑁02 = 5; hence 𝑥 [𝑛] is periodic and 𝑁0 = LCM(8, 5) = 40
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Discrete-time exponential

the discrete-time exponential function is

𝑥 [𝑛] = 𝛾𝑛

■ can be expressed in usual form 𝛾𝑛 = 𝑒𝜆𝑛 where 𝛾 = 𝑒𝜆

■ for discrete-time signals, 𝛾𝑛 is preferred over 𝑒𝜆𝑛

Complex exponential: for complex 𝛾 = 𝑟𝑒 𝑗Ω, we get

𝑥 [𝑛] = 𝑟𝑛𝑒 𝑗Ω𝑛 = 𝑟𝑛 (cosΩ𝑛 + 𝑗 sinΩ𝑛)

■ the frequency is |Ω|
■ the angle is 𝑛Ω

■ in complex plane, 𝑒 𝑗Ω𝑛 is a point on a unit circle at an angle Ω𝑛
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Nature of 𝛾𝑛

for 𝜆 = 𝑎 + 𝑗 𝑏, we have 𝑒𝜆𝑛 = 𝛾𝑛 where

𝛾 = 𝑒𝜆 = 𝑒𝑎𝑒 𝑗𝑏 and |𝛾 | = |𝑒𝑎 | |𝑒 𝑗𝑏 | = 𝑒𝑎

Nature of 𝑒𝜆𝑛

■ 𝑒𝜆𝑛 grows exponentially with 𝑛 if Re 𝜆 > 0 (𝜆 in RHP)

■ 𝑒𝜆𝑛 decays exponentially with 𝑛 if Re 𝜆 < 0 (𝜆 in LHP)

■ 𝑒𝜆𝑛 constant or oscillate if Re 𝜆 = 0 (𝜆 on imaginary axis)

Nature of 𝛾𝑛

■ 𝛾𝑛 grows exponentially with 𝑛 if |𝛾 | > 1 (𝛾 outside unit circle)

■ 𝛾𝑛 decays exponentially with 𝑛 if |𝛾 | < 1 (𝛾 inside unit circle)

■ 𝛾𝑛 is a constant or oscillate if |𝛾 | = 1 (𝛾 on unit circle)
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Behavior of 𝛾𝑛 for real 𝛾

0 < 𝛾 < 1 −1 < 𝛾 < 0

1 < 𝛾
𝛾 < −1
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Behavior of 𝛾𝑛 for complex 𝛾

real part imaginary part|𝛾 | < 1

|𝛾 | > 1real part imaginary part
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Example: plotting DT signals in Matlab

use Matlab to plot the following signals

(a) 𝑥𝑎 [𝑛] = (0.8)𝑛 over 0 ≤ 𝑛 ≤ 8

(b) 𝑥𝑏 [𝑛] = (−0.8)𝑛 over 0 ≤ 𝑛 ≤ 8

(c) 𝑥𝑐 [𝑛] = (0.5)𝑛 over 0 ≤ 𝑛 ≤ 8

(d) 𝑥𝑑 [𝑛] = (1.1)𝑛 over 0 ≤ 𝑛 ≤ 8

(e) 𝑥 [𝑛] = cos( 𝜋
12𝑛 +

𝜋
4 ) over −30 ≤ 𝑛 ≤ 30

stem command is used to plot DT signals

n = (0:8); x_a = @(n) (0.8).^n; x_b = @(n) (-0.8).^(n);

x_c = @(n) (0.5).^n; x_d = @(n) (1.1).^n;

subplot(2,2,1); stem(n,x_a(n),’filled’,’k’); ylabel(’x_a[n]’); xlabel(’n’);

subplot(2,2,2); stem(n,x_b(n),’filled’,’k’); ylabel(’x_b[n]’); xlabel(’n’);

subplot(2,2,3); stem(n,x_c(n),’filled’,’k’); ylabel(’x_c[n]’); xlabel(’n’);

subplot(2,2,4); stem(n,x_d(n),’filled’,’k’); ylabel(’x_d[n]’); xlabel(’n’);

figure

n = (-30:30); x = @(n) cos(n*pi/12+pi/4);

clf; stem(n,x(n),’filled’,’k’); ylabel(’x[n]’); xlabel(’n’);
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Time-shifting

the signal 𝑥 [𝑛] can be time shifted to the right or left by 𝑛0 > 0 units

𝑥 [𝑛 − 𝑛0] (right-shifted (delayed) signal)

𝑥 [𝑛 + 𝑛0] (left-shifted (advanced) signal)

Example:

𝑥 [𝑛]

𝑥 [𝑛 − 5]

𝑥 [𝑛 + 10]

(0.9)𝑛

(0.9)𝑛−5

(0.9)𝑛+10

𝑛

𝑛

𝑛
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Time reversal

the time reversal operation 𝑥 [−𝑛] rotates 𝑥 [𝑛] about the vertical axis

Example:

𝑥 [𝑛]

𝑥 [−𝑛]

(0.9)𝑛

(0.9)−𝑛
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Time-reversal and shifting

the time-reversal and shifting operation is 𝑥 [𝑘 − 𝑛]

1. 𝑥 [𝑛] time reverse−→ 𝑥 [−𝑛] (right) shift by 𝑘−→ 𝑥 [−(𝑛 − 𝑘)] = 𝑥 [𝑘 − 𝑛]

2. 𝑥 [𝑛] (left) shift by 𝑘−→ 𝑥 [𝑛 + 𝑘] time reverse−→ 𝑥 [𝑘 − 𝑛]

Example: find 𝑥 [20 − 𝑛]
𝑥 [𝑛]

𝑥 [−𝑛]

𝑥 [20 − 𝑛]

(0.9)𝑛

(0.9)−𝑛

(0.9)20−𝑛
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Example 4.1

plot 𝑥 [5 − 𝑛] for the signal 𝑥 [𝑛]

SA — EE312signal operations 4.18



Time scale: downsampling (time compression)

downsampling is the compression of 𝑥 [𝑛] by integer factor 𝑀 :

𝑥𝑑 [𝑛] = 𝑥 [𝑀𝑛]

■ 𝑥 [𝑀𝑛] selects every 𝑀 th sample: 𝑥 [0], 𝑥 [𝑀], 𝑥 [2𝑀], . . .
■ reduces the number of samples by factor 𝑀 (loss of samples)

■ if 𝑥 [𝑛] is sampled CT signal, this operation reduces sampling rate by 𝑀

Example:
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Time scale: upsampling

upsampling is the expansion of 𝑥 [𝑛] by integer factor 𝐿

𝑥𝑒 [𝑛] =
{
𝑥 [𝑛/𝐿] 𝑛 = 0,±𝐿,±2𝐿, . . .
0 otherwise (𝑛/𝐿 noninteger)

■ for 𝑛 = 0, 1, 2, . . ., 𝑥𝑒 [𝑛] is:

𝑥 [0], 0, 0, . . . , 0︸      ︷︷      ︸
𝐿−1 zeros

, 𝑥 [1], 0, 0, . . . , 0︸      ︷︷      ︸
𝐿−1 zeros

, 𝑥 [2], 0, 0, . . . , 0︸      ︷︷      ︸
𝐿−1 zeros

, 𝑥 [3], . . .

■ the sampling rate of 𝑥𝑒 [𝑛] is 𝐿 times that of 𝑥 [𝑛]

Interpolation

■ the process of filling-in the zero-valued samples is called interpolation

■ example: linear interpolation for 𝐿 = 2, we replace the zero samples by:

𝑥𝑖 [𝑛] = 1
2 (𝑥𝑒 [𝑛 − 1] + 𝑥𝑒 [𝑛 + 1])

SA — EE312signal operations 4.20



Example
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Combined operations

𝑥 [𝑎𝑛 − 𝑏] where 𝑎 and 𝑏 are integers

Method 1:

𝑥 [𝑛] time shift by 𝑏−→ 𝑥 [𝑛 − 𝑏] time scale by 𝑎−→ 𝑥 [𝑎𝑛 − 𝑏]

Method 2: if 𝑏/𝑎 is an integer, then 𝑥 [𝑎𝑛 − 𝑏] = 𝑥 [𝑎(𝑛 − 𝑏/𝑎)]

𝑥 [𝑛] time scale by 𝑎−→ 𝑥 [𝑎𝑛]
time shift by 𝑏/𝑎

−→ = 𝑥 [𝑎(𝑛 − 𝑏/𝑎)] = 𝑥 [𝑎𝑛 − 𝑏]
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Example 4.2

sketch 𝑥 [−15 − 3𝑛] for the DT signal shown below

Solution: we write 𝑥 [−15 − 3𝑛] = 𝑥 [−3(𝑛 + 5)] and follow the steps given next
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■ compress 𝑥 [𝑛] by 3 to get 𝑥 [3𝑛]

■ time-reverse 𝑥 [3𝑛] to get 𝑥 [−3𝑛]

■ left-shift 𝑥 [−3𝑛] by 5 to obtain 𝑥 [−3(𝑛 + 5)] = 𝑥 [−15 − 3𝑛]
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Even and odd signals

■ 𝑥𝑒 [𝑛] is even if 𝑥𝑒 [𝑛] = 𝑥𝑒 [−𝑛]
■ 𝑥𝑜 [𝑛] is odd if 𝑥𝑜 [𝑛] = −𝑥𝑜 [−𝑛]

even odd

every signal 𝑥 [𝑛] can expressed as

𝑥 [𝑛] = 1
2 [𝑥 [𝑛] + 𝑥 [−𝑛]]︸               ︷︷               ︸

even

+ 1
2 [𝑥 [𝑛] − 𝑥 [−𝑛]]︸               ︷︷               ︸

odd
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Example 4.3

find the even and odd parts of the function, 𝑥 [𝑛] = sin(2𝜋𝑛/7)
(
1 + 𝑛2

)
Solution: the even part is

𝑥𝑒 [𝑛] =
sin(2𝜋𝑛/7)

(
1 + 𝑛2

)
+ sin(−2𝜋𝑛/7)

(
1 + (−𝑛)2

)
2

= 0

the odd part is

𝑥𝑜 [𝑛] =
sin(2𝜋𝑛/7)

(
1 + 𝑛2

)
− sin(−2𝜋𝑛/7)

(
1 + (−𝑛)2

)
2

= sin(2𝜋𝑛/7) (1 + 𝑛2)

the function is odd since the even part is zero
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Properties

Multiplications

even function × odd function = odd function

odd function × odd function = even function

even function × even function = even function

Symmetric summation of even function: for positive integer 𝑁

𝑁∑︁
𝑛=−𝑁

𝑥 [𝑛] = 𝑥 [0] + 2

𝑁∑︁
𝑛=1

𝑥 [𝑛] (𝑥 [𝑛] is even)

Symmetric summation of odd function: for positive integer 𝑁

𝑁∑︁
𝑛=−𝑁

𝑥 [𝑛] = 0 (𝑥 [𝑛] is odd)
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Unit step and unit ramp

(discrete-time) unit-step

𝑢[𝑛] =
{
1 𝑛 ≥ 0

0, 𝑛 < 0

also called unit-step sequence

(discrete-time) unit-ramp

ramp[𝑛] =
{
𝑛 𝑛 > 0

0, 𝑛 ≤ 0
= 𝑛𝑢[𝑛]

also called unit-ramp sequence
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Unit impulse

(discrete-time) unit-impulse

𝛿[𝑛] =
{
1 𝑛 = 0

0 𝑛 ≠ 0

■ also called unit sample function or Kronecker delta function

■ defined everywhere (unlike continuous case)

■ 𝛿[𝑛] = 𝛿[𝑎𝑛] for any integer 𝑎 ≠ 0

unit periodic impulse (impulse train)

𝛿𝑁 [𝑛] =
∞∑︁

𝑚=−∞
𝛿[𝑛 − 𝑚𝑁]
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Properties

■ multiplication by DT impulse:

𝑥 [𝑛]𝛿[𝑛 − 𝑘] = 𝑥 [𝑘]𝛿[𝑛 − 𝑘]

■ sampling or sifting property:

𝑥 [𝑛] =
∞∑︁

𝑘=−∞
𝑥 [𝑘]𝛿[𝑛 − 𝑘]

Relation between unit step and unit impulse

𝑢[𝑛] =
𝑛∑︁

𝑘=−∞
𝛿[𝑘]

𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1]
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Rectangular sequence

the function
𝑢[𝑛 − 𝑛1] − 𝑢[𝑛 − 𝑛2]

with 𝑛1 < 𝑛2 is a rectangular sequence from 𝑛1 until (𝑛2 − 1)

Example:

𝑢[𝑛] − 𝑢[𝑛 − 10]

𝑛
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Example 4.4

describe the signal 𝑥 [𝑛] by a single expression valid for all 𝑛 using unit-sequence

Solution: there are many ways to do this; one expression is

𝑥 [𝑛] = 𝑛(𝑢[𝑛] − 𝑢[𝑛 − 5]) + 4(𝑢[𝑛 − 5] − 𝑢[𝑛 − 11]) − 2𝛿[𝑛 − 8]
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Energy signals

Energy of signal

𝐸𝑥 =

∞∑︁
𝑛=−∞

|𝑥 [𝑛] |2

■ if 𝐸𝑥 is finite, the signal is called an energy signal

■ 𝐸𝑥 is finite if |𝑥 [𝑛] | → 0 as |𝑛| → ∞; infinite otherwise

Example: the energy of the signal 𝑥 [𝑛] = (1/2)𝑛𝑢[𝑛] is

𝐸𝑥 =

∞∑︁
𝑛=−∞

�� ( 1
2

)𝑛
𝑢[𝑛]

��2 =

∞∑︁
𝑛=0

�� ( 1
2

)𝑛��2 =

∞∑︁
𝑛=0

(
1
2

)2𝑛
=

∞∑︁
𝑛=0

(
1
4

)𝑛
using the formula

∑∞
𝑛=0 𝑟

𝑛 = 1
1−𝑟 , |𝑟 | < 1, we obtain

𝐸𝑥 =
1

1 − 1/4 =
4

3
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Power signals

Power of a signal

𝑃𝑥 = lim
𝑁→∞

1

2𝑁 + 1

𝑁∑︁
𝑛=−𝑁

|𝑥 [𝑛] |2

■ 𝑃𝑥 is the time average (mean) of |𝑥 [𝑛] |2, also called average power

■
√
𝑃𝑥 is the rms (root-mean-square) value of 𝑥(𝑡)

■ if 𝑃𝑥 is finite and nonzero, the signal is called a power signal

Periodic signals power: a periodic signal 𝑥 [𝑛] with period 𝑁0 has power

𝑃𝑥 =
1

𝑁0

∑︁
𝑁0

|𝑥 [𝑛] |2 =
1

𝑁0

𝑚0+𝑁0−1∑︁
𝑛=𝑚0

|𝑥 [𝑛] |2 for any integer 𝑚0
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Energy and power signals

■ an energy signal has zero power

■ a power signal has infinite energy

■ hence, a signal cannot be both an energy signal and a power signal

■ some signals are neither energy nor power signals
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Example 4.5

find the energy of 𝑥 [𝑛] and the power of the periodic signal 𝑦[𝑛] shown below

Solution:

𝐸𝑥 =

5∑︁
𝑛=0

𝑛2 = 55

the period of signal 𝑦 is 𝑁0 = 6, hence

𝑃𝑦 =
1

𝑁0

𝑁0−1∑︁
𝑛=0

|𝑦[𝑛] |2 =
1

6

5∑︁
𝑛=0

𝑛2 =
55

6
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Example 4.6

find the energy 𝐸𝑥 and power 𝑃𝑥 of the signal 𝑥 [𝑛] = 3 cos(𝜋𝑛/4)

Solution: notice that 𝑥 [𝑛] is 8-periodic and, therefore, a power signal:

𝑃𝑥 =
1

8

7∑︁
𝑛=0

|𝑥 [𝑛] |2 =
1

8

[
2(3)2 + 4(3/

√︁
(2)2

]
=
1

8
[18 + 18] = 9

2
= 4.5

since 0 < 𝑃𝑥 < ∞, we know that 𝐸𝑥 = ∞

we can calculate the power in Matlab using the script:

x = @(n) 3*cos(pi*n/4); n = 0:7;

Px = sum(abs(x(n)).^2)/length(x(n))

[output is Px = 4.5000]
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