
3. Time-domain analysis of continuous-time systems

• zero-input response

• impulse response

• convolution and zero-state response

• system stability
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3.1



Linear systems response

response of linear system = ZIR + ZSR

Zero-input response (ZIR)

■ output 𝑦0 (𝑡) due to initial conditions alone

■ input is zero

Zero-state response (ZSR)

■ output due to the input 𝑥(𝑡) alone

■ all initial conditions are zero
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Linear time-invariant (LTI) differential system

𝑑𝑁 𝑦(𝑡)
𝑑𝑡𝑁

+ 𝑎1
𝑑𝑁−1𝑦(𝑡)
𝑑𝑡𝑁−1 + · · · + 𝑎𝑁−1

𝑑𝑦(𝑡)
𝑑𝑡

+ 𝑎𝑁 𝑦(𝑡)

= 𝑏0
𝑑𝑀𝑥(𝑡)
𝑑𝑡𝑀

+ 𝑏1
𝑑𝑀−1𝑥(𝑡)
𝑑𝑡𝑀−1 + · · · + 𝑏𝑀−1

𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑏𝑀𝑥(𝑡)

■ 𝑎𝑖 and 𝑏𝑖 are constants; we assume 𝑀 ≤ 𝑁 unless otherwise stated

■ for 𝑀 > 𝑁 , the system acts as an (𝑀 − 𝑁)th order differentiator, which should
be avoided since differentiation may greatly magnify high-frequency noise

Operator notation: using notation 𝐷𝑘 for 𝑑𝑘/𝑑𝑡𝑘 , we write

𝑄(𝐷)𝑦(𝑡) = 𝑃(𝐷)𝑥(𝑡)

where

𝑄(𝐷) = 𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁−1𝐷 + 𝑎𝑁
𝑃(𝐷) = 𝑏0𝐷𝑀 + 𝑏1𝐷𝑀−1 + · · · + 𝑏𝑀−1𝐷 + 𝑏𝑀
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Zero-input response

for system in page 3.3, the ZIR is the solution to:

𝑄(𝐷)𝑦0 (𝑡) = 0 or
(
𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁−1𝐷 + 𝑎𝑁

)
𝑦0 (𝑡) = 0

■ a linear combination of 𝑦0 (𝑡) and its 𝑁 successive derivatives is zero for all 𝑡

■ possible if 𝑦0 (𝑡) and all its 𝑁 successive derivatives share the same form; only an
exponential function 𝑐𝑒𝜆𝑡 has this property

■ suppose 𝑦0 (𝑡) = 𝑐𝑒𝜆𝑡 for some 𝑐 ≠ 0 and 𝜆, then using

𝐷𝑘𝑦0 (𝑡) =
𝑑𝑘𝑦0 (𝑡)
𝑑𝑡𝑘

= 𝑐𝜆𝑘𝑒𝜆𝑡 , 𝑘 = 1, . . . , 𝑁

we get

𝑐

(
𝜆𝑁 + 𝑎1𝜆𝑁−1 + · · · + 𝑎𝑁−1𝜆 + 𝑎𝑁

)
𝑒𝜆𝑡 = 𝑐𝑄(𝜆) = 0

hence, 𝑐𝑒𝜆 is a ZIR if 𝑄(𝜆) = 0
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Characteristic equation

the characteristic equation of the differential system is

𝑄(𝜆) = 𝜆𝑁 + 𝑎1𝜆𝑁−1 + · · · + 𝑎𝑁−1𝜆 + 𝑎𝑁 = 0

■ 𝑄(𝜆) is the characteristic polynomial

■ we can express 𝑄(𝜆) in factorized form

𝑄(𝜆) = (𝜆 − 𝜆1) (𝜆 − 𝜆2) · · · (𝜆 − 𝜆𝑁 ) = 0

■ the characteristic equation has 𝑁 solutions 𝜆1, 𝜆2, . . . , 𝜆𝑁 called characteristic
roots or characteristic values (also eigenvalues) of the system

■ all 𝑐1𝑒𝜆1𝑡 , 𝑐2𝑒𝜆2𝑡 , . . . , 𝑐𝑁 𝑒
𝜆𝑁 𝑡 satisfy the zero-input differential equation

■ form of ZIR depends on whether the roots are distinct, repeated, and/or complex
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Zero-input response

Distinct roots

𝑦0 (𝑡) = 𝑐1𝑒𝜆1𝑡 + 𝑐2𝑒𝜆2𝑡 + · · · + 𝑐𝑁 𝑒𝜆𝑁 𝑡

■ 𝑒𝜆1𝑡 , 𝑒𝜆2𝑡 , . . . , 𝑒𝜆𝑁 𝑡 are the characteristic or natural modes

■ 𝑐1, . . . , 𝑐𝑁 determined by 𝑁 auxiliary conditions or initial conditions

Repeated roots: when the root 𝜆1 is repeated 𝑟 times 𝜆1 = · · · = 𝜆𝑟 , then

𝑦0 (𝑡) =
(
𝑐1 + 𝑐2𝑡 + · · · + 𝑐𝑟 𝑡𝑟−1

)
𝑒𝜆1𝑡 + 𝑐𝑟+1𝑒𝜆𝑟+1𝑡 + · · · + 𝑐𝑁 𝑒𝜆𝑁 𝑡

■ the characteristic modes are

𝑒𝜆1𝑡 , 𝑡𝑒𝜆1𝑡 , . . . , 𝑡𝑟−1𝑒𝜆1𝑡 , 𝑒𝜆𝑟+1𝑡 , . . . , 𝑒𝜆𝑁 𝑡

■ can be generalized to multiple repeated roots
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Example 3.1

find the zero-input response, 𝑦0 (𝑡), of the LTIC systems described by

(a) (𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 𝐷𝑥(𝑡) with 𝑦0 (0) = 0 and ¤𝑦0 (0) = −5

(b) (𝐷2 + 6𝐷 + 9)𝑦(𝑡) = (3𝐷 + 5)𝑥(𝑡) with 𝑦0 (0) = 3 and ¤𝑦0 (0) = −7

Solution:

(a) the characteristic equation is

𝑄(𝜆) = 𝜆2 + 3𝜆 + 2 = (𝜆 + 1) (𝜆 + 2) = 0

characteristic roots are 𝜆1 = −1, 𝜆2 = −2 (characteristic modes are 𝑒−𝑡 , 𝑒−2𝑡 )

therefore, the zero-input response has the form

𝑦0 (𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡

taking derivative

¤𝑦0 (𝑡) = −𝑐1𝑒−𝑡 − 2𝑐2𝑒
−2𝑡
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to find 𝑐1 and 𝑐2, we use initial conditions 𝑦0 (0) = 0 and ¤𝑦0 (0) = −5:

𝑦0 (0) = 𝑐1 + 𝑐2 = 0

¤𝑦0 (0) = −𝑐1 − 2𝑐2 = −5

solving gives 𝑐1 = −5 and 𝑐2 = 5; hence

𝑦0 (𝑡) = −5𝑒−𝑡 + 5𝑒−2𝑡

(b) the characteristic equation is 𝜆2 + 6𝜆 + 9 = (𝜆 + 3)2 and the characteristic roots
are 𝜆1 = −3, 𝜆2 = −3 (repeated roots) (characteristic modes are 𝑒−3𝑡 , 𝑡𝑒−3𝑡 )

the zero-input response has the form:

𝑦0 (𝑡) = (𝑐1 + 𝑐2𝑡) 𝑒−3𝑡

using the initial conditions 𝑦0 (0) = 3 and ¤𝑦0 (0) = −7, we can show that 𝑐1 = 3
and 𝑐2 = 2; hence,

𝑦0 (𝑡) = (3 + 2𝑡)𝑒−3𝑡 𝑡 ≥ 0
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Complex roots forms

for a real system (real coefficients of differential system), complex roots are conjugate
pairs:

𝑄(𝜆) = (𝜆 − [𝛼 + 𝑗 𝛽]) (𝜆 − [𝛼 − 𝑗 𝛽]) = 0

Complex form: treat as distinct roots

𝑦0 (𝑡) = 𝑐1𝑒 (𝛼+ 𝑗𝛽)𝑡 + 𝑐2𝑒 (𝛼− 𝑗𝛽)𝑡

for a real system, 𝑐1 and 𝑐2 are conjugates

𝑐1 =
𝑐

2
𝑒 𝑗 𝜃 and 𝑐2 =

𝑐

2
𝑒− 𝑗 𝜃

Real-form: we can rewrite the response equivalently as

𝑦0 (𝑡) = 𝑐𝑒𝛼𝑡 cos(𝛽𝑡 + 𝜃)
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Example 3.2

find the zero-input response, 𝑦0 (𝑡), of the LTIC system described by(
𝐷2 + 4𝐷 + 40

)
𝑦(𝑡) = (𝐷 + 2)𝑥(𝑡)

with 𝑦0 (0) = 2 and ¤𝑦0 (0) = 16.78

Solution: the characteristic equation is 𝜆2 + 4𝜆 + 40 = 0; we can find the roots of a
polynomial using MATLAB command:

r = roots([1 4 40])

[output: r = -2.00+6.00i -2.00-6.00i] hence the characteristic roots are complex
𝜆1 = −2 + 𝑗6 and 𝜆2 = −2 − 𝑗6; since 𝛼 = −2 and 𝛽 = 6, the real-form solution is

𝑦0 (𝑡) = 𝑐𝑒−2𝑡 cos(6𝑡 + 𝜃)

taking derivative, we get

¤𝑦0 (𝑡) = −2𝑐𝑒−2𝑡 cos(6𝑡 + 𝜃) − 6𝑐𝑒−2𝑡 sin(6𝑡 + 𝜃)
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to find 𝑐 and 𝜃, we use the initial conditions 𝑦0 (0) = 2 and ¤𝑦0 (0) = 16.78:

2 = 𝑐 cos 𝜃

16.78 = −2𝑐 cos 𝜃 − 6𝑐 sin 𝜃

solution of these two equations in two unknowns 𝑐 cos 𝜃 and 𝑐 sin 𝜃 is

𝑐 cos 𝜃 = 2 and 𝑐 sin 𝜃 = −3.463

squaring and then adding these two equations yield

𝑐2 = (2)2 + (−3.464)2 = 16 =⇒ 𝑐 = 4

dividing 𝑐 sin 𝜃 = −3.463 by 𝑐 cos 𝜃 = 2, we have

tan 𝜃 =
−3.463

2
⇒ 𝜃 = tan−1

(
−3.463

2

)
= −𝜋

3

therefore,

𝑦0 (𝑡) = 4𝑒−2𝑡 cos
(
6𝑡 − 𝜋

3

)
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Initial conditions

■ in practice, the initial conditions are derived from the physical situation

■ for example, in an 𝑅𝐿𝐶 circuit, we may be given the conditions (initial capacitor
voltages, initial inductor currents,...etc)

Example: find the ZIR 𝑦0 (𝑡) (loop current) for 𝑡 ≥ 0 if 𝑦 (0−) = 0 and 𝑣𝐶 (0−) = 5

the differential (loop) equation relating 𝑦(𝑡) to 𝑥(𝑡) is

(𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 𝐷𝑥(𝑡)
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to find ZIR 𝑦0 (𝑡), we set input to zero 𝑥(𝑡) = 0

now the inductor current is still zero and the capacitor voltage is still 5 volts (cannot
change instantaneously); thus, 𝑦0 (0) = 0; to determine ¤𝑦0 (0), note that

¤𝑦0 (0) + 3𝑦0 (0) + 𝑣𝐶 (0) = 0

since 𝑦0 (0) = 0 and 𝑣𝐶 (0) = 5, we have ¤𝑦0 (0) = −5

the problem reduces to finding zero-input response 𝑦0 (𝑡) of the system specified
(𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 0, with 𝑦0 (0) = 0, ¤𝑦0 (0) = −5; from page 3.7, we have

𝑦0 (𝑡) = −5𝑒−𝑡 + 5𝑒−2𝑡 𝑡 ≥ 0
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Meaning of 0+ and 0−

■ conditions right before and after 𝑡 = 0 are conditions at 𝑡 = 0− and 𝑡 = 0+

■ ZIR 𝑦0 (𝑡) does not depend on 𝑥(𝑡), hence 𝑦0 (0−) = 𝑦0 (0+), ¤𝑦0 (0−) = ¤𝑦0 (0+),
. . .

■ in general, for the total response 𝑦(𝑡)

𝑦(0−) ≠ 𝑦(0+), ¤𝑦(0−) ≠ ¤𝑦(0+), . . .

because of zero-state component (i.e., input affects total response at 0+)

Example: in the previous example, we have

¤𝑦(0−) + 3𝑦(0−) + 𝑣𝐶 (0−) = 0 (at 𝑡 = 0− 𝑥(𝑡) = 0)

¤𝑦(0+) + 3𝑦(0+) + 𝑣𝐶 (0+) = 10 (at 𝑡 = 0+ 𝑥(𝑡) = 10)

■ current and capacitor voltage are 𝑦(0+) = 𝑦(0−) = 0, 𝑣𝐶 (0+) = 𝑣𝐶 (0−) = 5

■ substituting these values into the above we have

𝑦(0−) = 0, 𝑦(0+) = 0 and ¤𝑦(0−) = −5, ¤𝑦(0+) = 5

we see that ¤𝑦(0−) ≠ ¤𝑦(0+) = 5 for the total response
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Solving differential equations using MATLAB

(𝐷2 + 4𝐷 + 𝑘)𝑦(𝑡) = (3𝐷 + 5)𝑥(𝑡)

initial conditions 𝑦0 (0) = 3 and ¤𝑦0 (0) = −7 and 𝑥(𝑡) = 0

we apply MATLAB’s dsolve command to determine the zero-input response when:

(a) 𝑘 = 3

(b) 𝑘 = 4

(c) 𝑘 = 40
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MATLAB code
(a) syms y(t) % Define y as a symbolic function of t

ode = diff(y, 2) + 4*diff(y, 1) + 3*y == 0;

cond1 = y(0) == 3;

Dy = diff(y, 1); cond2 = Dy(0) == -7;

yo = dsolve(ode, cond1, cond2)

[output: yo = exp(-t) + 2exp(-3*t)]

(b) syms y(t) % Define y as a symbolic function of t

ode = diff(y, 2) + 4*diff(y, 1) + 4*y == 0;

cond1 = y(0) == 3;

Dy = diff(y, 1); cond2 = Dy(0) == -7;

yo = dsolve(ode, cond1, cond2)

[output: yo= -exp(-2*t)*(t - 3)]

(c) syms y(t)

ode = diff(y, 2) + 4*diff(y, 1) + 40*y == 0;

cond1 = y(0) == 3;

Dy = diff(y, 1);

cond2 = Dy(0) == -7;

yo = dsolve(ode, cond1, cond2)

[output: yo = (exp(-2*t)*(18*cos(6*t) - sin(6*t)))/6]
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Outline

• zero-input response

• impulse response

• convolution and zero-state response

• system stability



Impulse response

■ the (unit) impulse response, denoted by ℎ(𝑡), is the output of the system when
the input is 𝑥(𝑡) = 𝛿(𝑡) and all initial conditions are zero

■ an LTI system is causal if and only if ℎ(𝑡) = 0 for 𝑡 < 0

Impulse response for linear differential system(
𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁−1𝐷 + 𝑎𝑁

)
𝑦(𝑡)

=

(
𝑏0𝐷

𝑀 + 𝑏1𝐷𝑀−1 + · · · + 𝑏𝑀−1𝐷 + 𝑏𝑀
)
𝑥(𝑡)

■ the impulse response satisfies(
𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁−1𝐷 + 𝑎𝑁

)
ℎ(𝑡)

=

(
𝑏0𝐷

𝑀 + 𝑏1𝐷𝑀−1 + · · · + 𝑏𝑀−1𝐷 + 𝑏𝑀
)
𝛿(𝑡)

■ with zero initial conditions at 𝑡 = 0− (𝐷𝑘ℎ(0−) = 0)
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■ input 𝛿(𝑡) creates nonzero initial conditions (energy storages) at 𝑡 = 0+

■ i.c. creates output consisting of system’s characteristic modes for 𝑡 ≥ 0+

Impulse response form

■ for 𝑀 ≤ 𝑁 , the impulse response has the form

ℎ(𝑡) = 𝑏0𝛿(𝑡) + characteristic modes terms

where 𝑏0 is coefficient of 𝐷𝑁 in 𝑃(𝐷)

■ if 𝑀 > 𝑁 we can get impulse derivatives at 𝑡 = 0 (impractical case)
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Example 3.3 (impulse matching)

find the impulse response ℎ(𝑡) specified by

(𝐷2 + 5𝐷 + 6)𝑦(𝑡) = (𝐷 + 1)𝑥(𝑡)

Solution: 𝑏0 = 0, so ℎ(𝑡) consists of the characteristic modes only; characteristic
polynomial is 𝜆2 + 5𝜆 + 6 = (𝜆 + 2) (𝜆 + 3) and the roots are −2,−3

hence, the impulse response ℎ(𝑡) has the form:

ℎ(𝑡) = (𝑐1𝑒−2𝑡 + 𝑐2𝑒−3𝑡 )𝑢(𝑡)

letting 𝑥(𝑡) = 𝛿(𝑡) and 𝑦(𝑡) = ℎ(𝑡) in the differential equation, we obtain

¥ℎ(𝑡) + 5 ¤ℎ(𝑡) + 6ℎ(𝑡) = ¤𝛿(𝑡) + 𝛿(𝑡)

we have ℎ(0−) = 0 and ¤ℎ(0−) = 0, but the application of an impulse at 𝑡 = 0 creates
new initial conditions at 𝑡 = 0+; let ℎ (0+) = 𝐾1 and ¤ℎ (0+) = 𝐾2
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moreover, the jump discontinuities in ℎ(𝑡) and ¤ℎ(𝑡) at 𝑡 = 0 creates impulse terms

¤ℎ(0) = 𝐾1𝛿(𝑡), ¥ℎ(0) = 𝐾1
¤𝛿(𝑡) + 𝐾2𝛿(𝑡)

substituting in the equation and matching the coefficients of impulse terms:

𝐾1 = 1, 5𝐾1 + 𝐾2 = 1 =⇒ 𝐾1 = 1, 𝐾2 = −4

so ℎ (0+) = 𝐾1 = 1 and ¤ℎ (0+) = 𝐾2 = −4

using these initial conditions ℎ(𝑡) = (𝑐1𝑒−2𝑡 + 𝑐2𝑒−3𝑡 )𝑢(𝑡), we have

ℎ(0+) = 𝑐1 + 𝑐2 = 1

¤ℎ(0+) = −2𝑐1 − 3𝑐1 = −4

these two simultaneous equations yield 𝑐1 = −1 and 𝑐2 = 2; therefore,

ℎ(𝑡) =
(
−𝑒−2𝑡 + 2𝑒−3𝑡

)
𝑢(𝑡)
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Simplified impulse matching method

for an LTIC system with 𝑀 ≤ 𝑁 , the unit impulse response ℎ(𝑡) has the form:

ℎ(𝑡) = 𝑏0𝛿(𝑡) + [𝑃(𝐷)𝑦𝑛 (𝑡)] 𝑢(𝑡)

■ 𝑏0 is coefficient of 𝐷𝑁 in 𝑃(𝐷)

■ 𝑦𝑛 (𝑡) is a linear combination of the characteristic modes of the system with

𝑦𝑛 (0) = ¤𝑦𝑛 (0) = ¥𝑦𝑛 (0) = · · · = 𝑦 (𝑁−2)
𝑛 (0) = 0 and 𝑦

(𝑁−1)
𝑛 (0) = 1

■ for example:

𝑁 = 1 : 𝑦𝑛 (0) = 1

𝑁 = 2 : 𝑦𝑛 (0) = 0, ¤𝑦𝑛 (0) = 1

𝑁 = 3 : 𝑦𝑛 (0) = ¤𝑦𝑛 (0) = 0, ¥𝑦𝑛 (0) = 1, ...etc
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Example 3.4

determine the unit impulse response ℎ(𝑡) for a system specified by the equation

(𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 𝐷𝑥(𝑡)

Solution: this is a second-order system (𝑁 = 2) having the characteristic polynomial
𝜆2 + 3𝜆 + 2 = (𝜆 + 1) (𝜆 + 2) and the characteristic roots are 𝜆 = −1, 𝜆 = −2; thus,

𝑦𝑛 (𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡

taking derivative ¤𝑦𝑛 (𝑡) = −𝑐1𝑒−𝑡 − 2𝑐2𝑒
−2𝑡 and using the initial conditions

¤𝑦𝑛 (0) = 1 and 𝑦𝑛 (0) = 0, we have

𝑦𝑛 (0) = 0 = 𝑐1 + 𝑐2
¤𝑦𝑛 (0) = 1 = −𝑐1 − 2𝑐2

solving gives 𝑐1 = 1 and 𝑐2 = −1; thus, 𝑦𝑛 (𝑡) = 𝑒−𝑡 − 𝑒−2𝑡

since 𝑃(𝐷) = 𝐷 and 𝑏0 = 0, we have

ℎ(𝑡) = 𝑏0𝛿(𝑡) + [𝑃(𝐷)𝑦𝑛 (𝑡)] 𝑢(𝑡) = [𝐷𝑦𝑛 (𝑡)] 𝑢(𝑡) = (−𝑒−𝑡 + 2𝑒−2𝑡 )𝑢(𝑡)
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Using MATLAB to find the impulse response

use MATLAB to determine the impulse response ℎ(𝑡) for the differential equation

(𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 𝐷𝑥(𝑡)

■ a second-order system with 𝑏0 = 0

■ first we find the zero-input component with 𝑦(0−) = 0, and ¤𝑦(0−) = 1

■ since 𝑃(𝐷) = 𝐷, the zero-input response is differentiated and the impulse
response immediately follows as ℎ(𝑡) = 0𝛿(𝑡) + [𝐷𝑦𝑛 (𝑡)] 𝑢(𝑡)

syms y(t)

ode = diff(y, 2) + 3*diff(y, 1) + 2*y == 0;

cond1 = y(0) == 0;

Dy = diff(y, 1);

cond2 = Dy(0) == 1;

y_n = dsolve(ode, cond1, cond2);

h = diff(y_n)

[output: h=2*exp(-2*t) - exp(-t)]
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Outline

• zero-input response

• impulse response

• convolution and zero-state response

• system stability



Derivation of zero-state response of LTI system

we can approximate 𝑥(𝑡) by a series of rectangular pulses of uniform width Δ𝜆

𝑥(𝑡) = 𝑥0 (𝑡) + 𝑥1 (𝑡) + · · · + 𝑥𝑖 (𝑡) + · · ·

where 𝑥𝑖 (𝑡) is a rectangular pulse with value 𝑥(𝜆𝑖) between 𝜆𝑖 and 𝜆𝑖+1:

𝑥𝑖 (𝑡) = 𝑥(𝜆𝑖) [𝑢 (𝑡 − 𝜆𝑖) − 𝑢 (𝑡 − (𝜆𝑖 + Δ𝜆))]

the next step in the approximation of 𝑥(𝑡) is to make Δ𝜆 small enough that the 𝑖th
component can be approximated by an impulse function of strength 𝑥 (𝜆𝑖) Δ𝜆

lim
Δ𝜆→0

𝑢 (𝑡 − 𝜆𝑖) − 𝑢 (𝑡 − (𝜆𝑖 + Δ𝜆))
Δ𝜆

= 𝛿(𝜆 − 𝜆𝑖)
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𝑥(𝑡) = 𝑥(𝜆0)Δ𝜆𝛿(𝑡 − 𝜆0) + 𝑥(𝜆1)Δ𝜆𝛿(𝑡 − 𝜆1) + · · · + 𝑥(𝜆𝑖)Δ𝜆𝛿(𝑡 − 𝜆𝑖) + · · ·

using linearity and time-invariance the response function 𝑦(𝑡) consists of the sum of a
series of uniformly delayed impulse responses

𝑦(𝑡) = 𝑥 (𝜆0) Δ𝜆ℎ (𝑡 − 𝜆0) + 𝑥 (𝜆1) Δ𝜆ℎ (𝑡 − 𝜆1) + · · ·

=

∞∑︁
𝑖=0

𝑥 (𝜆𝑖) ℎ (𝑡 − 𝜆𝑖) Δ𝜆
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as Δ𝜆 → 0, the summation approaches a continuous integration, hence

∞∑︁
𝑖=0

𝑥 (𝜆𝑖) ℎ (𝑡 − 𝜆𝑖) Δ𝜆 →
∫ ∞

0

𝑥(𝜆)ℎ(𝑡 − 𝜆)𝑑𝜆

therefore,

𝑦(𝑡) =
∫ ∞

0

𝑥(𝜆)ℎ(𝑡 − 𝜆)𝑑𝜆

if 𝑥(𝑡) exists over all time, then the lower limit becomes −∞; thus, in general

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) =
∫ ∞

−∞
𝑥(𝜆)ℎ(𝑡 − 𝜆)𝑑𝜆

here the ∗ denotes the convolution operation read as “ℎ(𝑡) is convolved with 𝑥(𝑡) ”
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Zero-state response of LTI systems

convolution integral of two functions 𝑥1 (𝑡) and 𝑥2 (𝑡) is

𝑥1 (𝑡) ∗ 𝑥2 (𝑡) ≜
∫ ∞

−∞
𝑥1 (𝜏)𝑥2 (𝑡 − 𝜏)𝑑𝜏

Zero state response

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) =
∫ ∞

−∞
𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏

■ ZSR of an LTIC system is the convolution of input 𝑥(𝑡) and impulse response ℎ(𝑡)

■ if 𝑥(𝑡) and ℎ(𝑡) are both causal, then the response 𝑦(𝑡) is also causal:

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) =
{∫ 𝑡

0− 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 𝑡 ≥ 0

0 𝑡 < 0
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Example 3.5

for an LTIC system with impulse response ℎ(𝑡) = 𝑒−2𝑡𝑢(𝑡), determine response 𝑦(𝑡)
for input 𝑥(𝑡) = 𝑒−𝑡𝑢(𝑡)

Solution: both 𝑥(𝑡) and ℎ(𝑡) are causal, therefore,

𝑦(𝑡) =
∫ 𝑡

0

𝑒−𝜏𝑢(𝜏)𝑒−2(𝑡−𝜏 )𝑢(𝑡 − 𝜏)𝑑𝜏

= 𝑒−2𝑡
∫ 𝑡

0

𝑒𝜏𝑑𝜏 = 𝑒−2𝑡 (𝑒𝑡 − 1) = 𝑒−𝑡 − 𝑒−2𝑡 𝑡 ≥ 0

thus,

𝑦(𝑡) = (𝑒−𝑡 − 𝑒−2𝑡 )𝑢(𝑡)
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Convolution properties

Commutative
𝑥1 (𝑡) ∗ 𝑥2 (𝑡) = 𝑥2 (𝑡) ∗ 𝑥1 (𝑡)

Distributive

𝑥1 (𝑡) ∗ [𝑥2 (𝑡) + 𝑥3 (𝑡)] = 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) + 𝑥1 (𝑡) ∗ 𝑥3 (𝑡)

Associative

𝑥1 (𝑡) ∗ [𝑥2 (𝑡) ∗ 𝑥3 (𝑡)] = [𝑥1 (𝑡) ∗ 𝑥2 (𝑡)] ∗ 𝑥3 (𝑡)

Shifting: if 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) = 𝑦(𝑡) then

𝑥1 (𝑡 − 𝑡1) ∗ 𝑥2 (𝑡 − 𝑡2) = 𝑦 (𝑡 − 𝑡1 − 𝑡2)

Convolution with an impulse

𝑥(𝑡) ∗ 𝐴𝛿(𝑡 − 𝑡0) = 𝐴𝑥(𝑡 − 𝑡0)
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Differentiation: if 𝑦(𝑡) = 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) then

¤𝑦(𝑡) = ¤𝑥1 (𝑡) ∗ 𝑥2 (𝑡) = 𝑥1 (𝑡) ∗ ¤𝑥2 (𝑡)

Scaling: if 𝑦(𝑡) = 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) then

𝑦(𝑎𝑡) = |𝑎 | 𝑥1 (𝑎𝑡) ∗ 𝑥2 (𝑎𝑡)

Area: if 𝑦(𝑡) = 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) then

area of 𝑦 = (area of 𝑥1) × (area of 𝑥2)

Width: width of 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) is 𝑇1 + 𝑇2 where 𝑇1, 𝑇2 are widths of 𝑥1 (𝑡), 𝑥2 (𝑡)
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Example 3.6 (convolution table)

the convolution of common pairs of functions are already known and can be found
from the convolution table

use the convolution table to find the following convolutions:
(a) 𝑒−𝑡𝑢(𝑡) ∗ 𝑢(𝑡)
(b) 𝑒−𝑡𝑢(𝑡) ∗ 𝑒−𝑡𝑢(𝑡)
(c) 𝑒−𝑡𝑢(𝑡) ∗ 𝑒−2𝑡𝑢(𝑡)
(d) 𝑒−𝑡𝑢(𝑡) ∗ sin(3𝑡)𝑢(𝑡)

Solution:
(a) (1 − 𝑒−𝑡 ) 𝑢(𝑡)
(b) 𝑒−𝑡𝑢(𝑡) ∗ 𝑒−𝑡𝑢(𝑡) = 𝑡𝑒−𝑡𝑢(𝑡)
(c) 𝑒−𝑡𝑢(𝑡) ∗ 𝑒−2𝑡𝑢(𝑡) =

(
𝑒−𝑡 − 𝑒−2𝑡

)
𝑢(𝑡)

(d) we use pair 12 (in Table) with 𝛼 = 0, 𝛽 = 3, 𝜃 = −90◦ and 𝜆 = −1: this gives
𝜙 = tan−1 (−3/−1) = −108.4◦ and

sin(3𝑡)𝑢(𝑡) ∗ 𝑒−𝑡𝑢(𝑡) = (cos 18.4◦ )𝑒−𝑡−cos(3𝑡+18.4◦ )√
10

𝑢(𝑡)

=
0.9486𝑒−𝑡−cos(3𝑡+18.4◦ )√

10
𝑢(𝑡)
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Example 3.7

an LTI system has an impulse response ℎ(𝑡) = 2𝑒−3𝑡𝑢(𝑡); determine the (zero-state)
response of the system if the input is 𝑥(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1/3)

Solution: for input 𝑥(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1/3), we have

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) = ℎ(𝑡) ∗ 𝑢(𝑡) − ℎ(𝑡) ∗ 𝑢(𝑡 − 1/3)
= 2(𝑒−3𝑡𝑢(𝑡) ∗ 𝑢(𝑡)) − 2(𝑒−3𝑡𝑢(𝑡) ∗ 𝑢(𝑡 − 1/3))

using table and the shift property 𝑥1 (𝑡) ∗ 𝑥2 (𝑡 − 1/3) = 𝑦(𝑡 − 1/3), we get

𝑦(𝑡) = (2/3) (1 − 𝑒−3𝑡 )𝑢(𝑡) − (2/3) (1 − 𝑒−3(𝑡−1/3) )𝑢(𝑡 − 1/3)

= (2/3)
[
(1 − 𝑒−3𝑡 )𝑢(𝑡) − (1 − 𝑒−3(𝑡−1/3) )𝑢(𝑡 − 1/3)

]
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Example 3.8

use the convolution table and the differentiation property to find the zero-state
response 𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) of an LTIC system with ℎ(𝑡) = rect(𝑡) and
𝑥(𝑡) = rect(𝑡) where rect(𝑡) = 𝑢(𝑡 + 1

2 ) − 𝑢(𝑡 −
1
2 )

Solution: from diff. property, we have

𝑦′′ (𝑡) = 𝑥′ (𝑡) ∗ ℎ′ (𝑡) = [𝛿(𝑡 + 1
2 ) − 𝛿(𝑡 −

1
2 )] ∗ [𝛿(𝑡 + 1

2 ) − 𝛿(𝑡 −
1
2 )]

= 𝛿(𝑡 + 1) − 2𝛿(𝑡) + 𝛿(𝑡 − 1)
integrating twice, we get

𝑦′ (𝑡) = 𝑢(𝑡 + 1) − 2𝑢(𝑡) + 𝑢(𝑡 − 1)
𝑦(𝑡) = (𝑡 + 1)𝑢(𝑡 + 1) − 2𝑡𝑢(𝑡) + (𝑡 − 1)𝑢(𝑡 − 1)

or alternatively,

𝑦(𝑡) = 𝑥′ (𝑡) ∗
∫ 𝑡

−∞
ℎ(𝜏)𝑑𝜏

= [𝛿(𝑡 + 1
2 ) − 𝛿(𝑡 −

1
2 )] ∗

(
(𝑡 + 1

2 ) [𝑢(𝑡 +
1
2 ) − 𝑢(𝑡 −

1
2 )] + 𝑢(𝑡 −

1
2 )
)

= (𝑡 + 1)𝑢(𝑡 + 1) − 2𝑡𝑢(𝑡) + (𝑡 − 1)𝑢(𝑡 − 1)
SA — EE312convolution and zero-state response 3.33



Convolution via graphical procedure

let 𝑐(𝑡) be the convolution of 𝑥(𝑡) with 𝑔(𝑡):

𝑐(𝑡) =
∫ ∞

−∞
𝑥(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

■ integration is performed with respect to 𝜏 so that 𝑡 is treated as constant

■ if we know graphs of 𝑥(𝑡) and 𝑔(𝑡), then we can determine 𝑐(𝑡) graphically

Illustration
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𝑐(𝑡1) is the area 𝐴1 and 𝑐(𝑡2) is area 𝐴2
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Summary of the graphical procedure

1. keep the function 𝑥(𝜏) fixed

2. rotate (or invert) 𝑔(𝜏) about the vertical axis (𝜏 = 0) to obtain 𝑔(−𝜏)

3. shift 𝑔(−𝜏) along the 𝜏 axis by 𝑡0 seconds to obtain 𝑔(𝑡0 − 𝜏)

4. the area under the product of 𝑥(𝜏) and 𝑔 (𝑡0 − 𝜏) (the shifted frame) is 𝑐 (𝑡0)

5. repeat this procedure, shifting the frame by different values (positive and negative)
to obtain 𝑐(𝑡) for all values of 𝑡

Remark: if the mathematical description of 𝑥(𝑡) is simpler than that of 𝑔(𝑡), then
𝑔(𝑡) ∗ 𝑥(𝑡) will be easier to compute than 𝑥(𝑡) ∗ 𝑔(𝑡)
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Example 3.9

find 𝑐(𝑡) = 𝑥(𝑡) ∗ 𝑔(𝑡) for the signals shown below

Solution: we have 𝑥(𝑡) = 1 so that 𝑥(𝜏) = 1; notice that

𝑔(𝑡) =
{
2𝑒−𝑡 segment A

−2𝑒2𝑡 segment B
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plotting 𝑥(𝜏) and 𝑔(−𝜏)

we have

𝑔(𝑡 − 𝜏) =
{
2𝑒−(𝑡−𝜏 ) segment A

−2𝑒2(𝑡−𝜏 ) segment B
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for 𝑡 ≥ 0:

𝑐(𝑡) =
∫ ∞

0

𝑥(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 =
∫ 𝑡

0

2𝑒−(𝑡−𝜏 )𝑑𝜏 +
∫ ∞

𝑡

−2𝑒2(𝑡−𝜏 )𝑑𝜏

= 2
(
1 − 𝑒−𝑡

)
− 1 = 1 − 2𝑒−𝑡

for 𝑡 ≤ 0:

𝑐(𝑡) =
∫ ∞

0

𝑥(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 =
∫ ∞

0

−2𝑒2(𝑡−𝜏 )𝑑𝜏 = −𝑒2𝑡

therefore,

𝑐(𝑡) =
{
1 − 2𝑒−𝑡 𝑡 ≥ 0

−𝑒2𝑡 𝑡 ≤ 0
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Example 3.10

find 𝑥(𝑡) ∗ 𝑔(𝑡) for the functions 𝑥(𝑡) and 𝑔(𝑡) shown below

Solution: the signal 𝑥(𝑡) has a simpler mathematical description than 𝑔(𝑡); hence,
we shall determine 𝑔(𝑡) ∗ 𝑥(𝑡):

𝑐(𝑡) = 𝑔(𝑡) ∗ 𝑥(𝑡) =
∫ ∞

−∞
𝑔(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏
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nonzero segments of 𝑥(𝑡) and 𝑔(𝑡) are 𝑥(𝑡) = 1 and 𝑔(𝑡) = 1
3 𝑡; hence

𝑥(𝑡 − 𝜏) = 1 and 𝑔(𝜏) = 1
3𝜏

for −1 ≤ 𝑡 ≤ 1 the two functions overlap over the interval (0, 1 + 𝑡) so that

𝑐(𝑡) =
∫ 1+𝑡

0

𝑔(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏 =
∫ 1+𝑡

0

1
3𝜏𝑑𝜏 =

1
6 (𝑡 + 1)2, −1 ≤ 𝑡 ≤ 1
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1 ≤ 𝑡 ≤ 2:

𝑐(𝑡) =
∫ 1+𝑡

−1+𝑡

1

3
𝜏𝑑𝜏 =

2

3
𝑡 1 ≤ 𝑡 ≤ 2

2 ≤ 𝑡 ≤ 4:

𝑐(𝑡) =
∫ 3

−1+𝑡

1

3
𝜏𝑑𝜏 = −1

6

(
𝑡2 − 2𝑡 − 8

)
2 ≤ 𝑡 ≤ 4
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𝑡 ≥ 4 and 𝑡 < −1, we have 𝑐(𝑡) = 0

combining our results:

𝑐(𝑡) =


1
6 (𝑡 + 1)2 −1 ≤ 𝑡 < 1
2
3 𝑡 1 ≤ 𝑡 < 2

− 1
6

(
𝑡2 − 2𝑡 − 8

)
2 ≤ 𝑡 < 4

0 otherwise
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Parallel and cascade systems impulse response

Parallel connection

Cascade connection
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Cascade systems properties

■ using the commutative property of convolution, we have

■ this means that 𝑥(𝑡) =⇒ 𝑦(𝑡), then∫ 𝑡

−∞
𝑥(𝜏)𝑑𝜏 =⇒

∫ 𝑡

−∞
𝑦(𝜏)𝑑𝜏

■ replacing the integrator with a differentiator, we can show that

𝑑𝑥(𝑡)
𝑑𝑡

=⇒ 𝑑𝑦(𝑡)
𝑑𝑡

■ the cascade system ℎ(𝑡) with its inverse system ℎ𝑖 (𝑡) is an identity system:

ℎ(𝑡) ∗ ℎ𝑖 (𝑡) = 𝛿(𝑡)
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Unit-step response

Unit step response: the unit step response (output due to step input 𝑢(𝑡)) of an
LTIC system with impulse ℎ(𝑡) is

𝑔(𝑡) =
∫ 𝑡

−∞
ℎ(𝜏)𝑑𝜏

■ using cascade property, we can represent system as:

■ impulse response of the dotted box is 𝑔(𝑡); thus

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ¤𝑥(𝑡) ∗ 𝑔(𝑡)
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LTI output due to exponential input

an LTIC system response 𝑦(𝑡) to an everlasting exponential 𝑒𝑠𝑡 is

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑒𝑠𝑡 =
∫ ∞

−∞
ℎ(𝜏)𝑒𝑠 (𝑡−𝜏 )𝑑𝜏 = 𝐻 (𝑠)𝑒𝑠𝑡

■ 𝐻 (𝑠) is the transfer function of the system:

𝐻 (𝑠) =
∫ ∞

−∞
ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏

■ input 𝑒𝑠𝑡 gives output 𝐻 (𝑠)𝑒𝑠𝑡 of same form; such an input is called the
eigenfunction (or characteristic function) of the system

■ an alternate definition of the transfer function 𝐻 (𝑠) of an LTIC system is

𝐻 (𝑠) = output signal

input signal

����
input = everlasting exponential 𝑒𝑠𝑡
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Practical significance of transfer function

■ transfer function is defined for, and is meaningful to, LTIC systems only

■ practical signals can be expressed as a sum of exponentials (or sinusoids)

■ for example, a periodic signal 𝑥(𝑡) can be expressed as a sum of exponentials as

𝑥(𝑡) =
∑︁
𝑘

𝑋𝑘𝑒
𝑠𝑘 𝑡

■ response 𝑦(𝑡) of an LTIC system with transfer function 𝐻 (𝑠) to this input 𝑥(𝑡) is

𝑦(𝑡) =
∑︁
𝑘

𝐻 (𝑠𝑘)𝑋𝑘𝑒
𝑠𝑘 𝑡
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Transfer function of LTI differential system

𝑄(𝐷)𝑦(𝑡) = 𝑃(𝐷)𝑥(𝑡)

𝑄(𝐷) = 𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁−1𝐷 + 𝑎𝑁
𝑃(𝐷) = 𝑏0𝐷𝑀 + 𝑏1𝐷𝑀−1 + · · · + 𝑏𝑀−1𝐷 + 𝑏𝑀

Transfer function

𝐻 (𝑠) = 𝑃(𝑠)
𝑄(𝑠)

■ to see this, we let 𝑥(𝑡) = 𝑒𝑠𝑡 use 𝑦(𝑡) = 𝐻 (𝑠)𝑒𝑠𝑡 :

𝐻 (𝑠)
[
𝑄(𝐷)𝑒𝑠𝑡

]
= 𝑃(𝐷)𝑒𝑠𝑡

■ we have 𝑃(𝐷)𝑒𝑠𝑡 = 𝑃(𝑠)𝑒𝑠𝑡 and 𝑄(𝐷)𝑒𝑠𝑡 = 𝑄(𝑠)𝑒𝑠𝑡 consequently,
𝐻 (𝑠) = 𝑃(𝑠)/𝑄(𝑠)
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Example 3.11 (total response of LTI systems)

LTI system total response = ZIR +

ZSR︷      ︸︸      ︷
𝑥(𝑡) ∗ ℎ(𝑡)

find the total response for the system

(𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 𝐷𝑥(𝑡)

with input 𝑥(𝑡) = 10𝑒−3𝑡𝑢(𝑡) and initial conditions 𝑦(0−) = 0, ¤𝑦(0−) = −5

Solution: the zero-input and the impulse response were found in slides 3.7 and 3.22:

𝑦0 (𝑡) = (−5𝑒−𝑡 + 5𝑒−2𝑡 )
ℎ(𝑡) = (2𝑒−2𝑡 − 𝑒−𝑡 )𝑢(𝑡)
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we now use the convolution table to compute the zero-state response:

𝑦zsr (𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = 10𝑒−3𝑡𝑢(𝑡) ∗
[
2𝑒−2𝑡 − 𝑒−𝑡

]
𝑢(𝑡)

using the distributive property of the convolution, we obtain

𝑦zsr (𝑡) = 10𝑒−3𝑡𝑢(𝑡) ∗ 2𝑒−2𝑡𝑢(𝑡) − 10𝑒−3𝑡𝑢(𝑡) ∗ 𝑒−𝑡𝑢(𝑡)
= 20[𝑒−3𝑡𝑢(𝑡) ∗ 𝑒−2𝑡𝑢(𝑡)] − 10[𝑒−3𝑡𝑢(𝑡) ∗ 𝑒−𝑡𝑢(𝑡)]

using the table (pair 4) yields

𝑦(𝑡) = 20
−3−(−2) [𝑒

−3𝑡 − 𝑒−2𝑡 ]𝑢(𝑡) − 10
−3−(−1) [𝑒

−3𝑡 − 𝑒−𝑡 ]𝑢(𝑡)
= −20(𝑒−3𝑡 − 𝑒−2𝑡 )𝑢(𝑡) + 5(𝑒−3𝑡 − 𝑒−𝑡 )𝑢(𝑡)
= (−5𝑒−𝑡 + 20𝑒−2𝑡 − 15𝑒−3𝑡 )𝑢(𝑡)

therefore,

total response = (−5𝑒−𝑡 + 5𝑒−2𝑡 )︸              ︷︷              ︸
zero-input response

+ (−5𝑒−𝑡 + 20𝑒−2𝑡 − 15𝑒−3𝑡 )︸                             ︷︷                             ︸
zero-state response

𝑡 ≥ 0
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Natural and forced response

Natural response: the natural response 𝑦𝑛 (𝑡) is the the part resulting from the
combination of all the characteristic mode terms in the total response

Forced response: the forced response 𝑦𝜙 (𝑡) is the part consisting entirely of
noncharacteristic mode terms

■ the forced response is the particular solution of the differential equation; it is the
part of the response the form of which is determined by the input signal

■ the natural response is the homogeneous solution of the differential equation,
where the constants are determined such that the sum of the particular solution
and the homogeneous solution satisfies the given initial condition

Example: the total response of the previous 𝑅𝐿𝐶 example can also be expressed as

total current =
(
−10𝑒−𝑡 + 25𝑒−2𝑡

)︸                  ︷︷                  ︸
natural response 𝑦𝑛 (𝑡 )

+
(
−15𝑒−3𝑡

)︸      ︷︷      ︸
forced response 𝑦𝜙 (𝑡 )

𝑡 ≥ 0
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Outline

• zero-input response

• impulse response

• convolution and zero-state response

• system stability



BIBO (external) stability

■ system is BIBO stable if every bounded input produces a bounded output

■ an LTIC system is BIBO stable if and only if∫ ∞

−∞
|ℎ(𝜏) |𝑑𝜏 < ∞

Examples

■ a system with ℎ(𝑡) = 𝑢(𝑡) is BIBO unstable since∫ ∞

−∞
|ℎ(𝜏) |𝑑𝜏 =

∫ ∞

0

𝑑𝜏 = 𝑡 |∞0 = ∞

■ a system with ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡) is BIBO stable since∫ ∞

−∞
|ℎ(𝜏) |𝑑𝜏 =

∫ ∞

0

𝑒−𝑡𝑑𝜏 = −𝑒−𝑡
��∞
0
= 1
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Asymptotic (internal) stability

the LTIC differential system described is
1. asymptotically stable if, and only if, all the characteristic roots are in the LHP

2. marginally stable if, and only if, there are no roots in the RHP, and there are some
unrepeated roots on the imaginary axis

3. unstable if, and only if, one or both of the following holds:
– at least one root is in the RHP
– there are repeated roots on the imaginary axis

marginally stable
if simple roots

unstable if
multiple roots

stable unstable
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characterisitc root
location

zero-input response characterisitc root
location

zero-input response
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■ for an LTIC system, if characteristic root 𝜆𝑘 is in the LHP, then the corresponding
mode 𝑒𝜆𝑘 𝑡 is absolutely integrable

■ if 𝜆𝑘 is in the RHP or on the imaginary axis, then 𝑒𝜆𝑘 𝑡 is not absolutely integrable

Relationship between BIBO and asymptotic stability

■ an asymptotically (internally) stable system is BIBO-stable

■ BIBO unstable implies asymptotically (internally) unstable

■ BIBO stability does not imply asymptotic (internal) stability

■ marginally stable or asymptotically unstable LTI system is BIBO-unstable
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Example 3.12

the impulse response of these systems are ℎ1 (𝑡) = 𝛿(𝑡) − 2𝑒−𝑡𝑢(𝑡) and
ℎ2 (𝑡) = 𝑒𝑡𝑢(𝑡); determine the BIBO and asymptotic stability of the system

Solution: the composite system impulse response ℎ(𝑡) is

ℎ(𝑡) = ℎ1 (𝑡) ∗ ℎ2 (𝑡) =
[
𝛿(𝑡) − 2𝑒−𝑡𝑢(𝑡)

]
∗ 𝑒𝑡𝑢(𝑡)

= 𝑒𝑡𝑢(𝑡) − 2

[
𝑒𝑡 − 𝑒−𝑡

2

]
𝑢(𝑡) = 𝑒−𝑡𝑢(𝑡)

■ composite system is BIBO-stable because ℎ(𝑡) is absolutely integrable

■ subsystem 𝑆2 has a characteristic root 1; hence, 𝑆2 is asymptotically unstable

■ so the whole system is unstable

■ this shows that BIBO stability does not always imply asymptotic stability
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Example 3.13

investigate the asymptotic and the BIBO stability of the LTIC systems:

(a) (𝐷 + 1) (𝐷2 + 4𝐷 + 8)𝑦(𝑡) = (𝐷 − 3)𝑥(𝑡)
(b) (𝐷 − 1) (𝐷2 + 4𝐷 + 8)𝑦(𝑡) = (𝐷 + 2)𝑥(𝑡)
(c) (𝐷 + 2) (𝐷2 + 4)𝑦(𝑡) = (𝐷2 + 𝐷 + 1)𝑥(𝑡)
(d) (𝐷 + 1) (𝐷2 + 4)2𝑦(𝑡) = (𝐷2 + 2𝐷 + 8)𝑥(𝑡)
Solution: the characteristic roots of the systems are

(a) −1,−2 ± 𝑗2; asymptotically stable (all roots in LHP) and BIBO-stable

(b) 1,−2 ± 𝑗2; unstable (one root in RHP) and BIBO-unstable

(c) −2,± 𝑗2; marginally stable (unrepeated roots on imaginary axis) and no roots in
RHP; BIBO-unstable

(d) −1,± 𝑗2,± 𝑗2; unstable (repeated roots on imaginary axis); BIBO-unstable
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