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System

a systemis an entity that processes input signals to provide output signals

= a system that operates on CT-signals is a continuous-time systems
= to excite a system means to apply energy that causes it to respond

= a system can have multiple inputs and multiple outputs (MIMO)

x1 (1) ——ri = y1(?)

xo(1) ——— = y2(0)
: : system : :

xj (1) —— = Yk (2)

CT systems
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Examples

= amplifier: y(t) = ax(t)
. t
= integrator: y(t) = /_oox('r)dr

» RC-circuit

+ y(@®)

x(t) C =< v

the input current x(¢) and output voltage y(¢) are related by:

y(t) = Rx(t) +vc(tp) + % /tx(‘r)d‘r, t>1

to

CT systems
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System analysis and design

the study of systems consists of three major areas:

= system modeling: the mathematical equations relating the outputs to the inputs
are called the system model

= system analysis: how to determine the system outputs for the given inputs and a
given mathematical model of the system

= system design (synthesis): how to construct a system that will produce a
desired set of outputs for the given inputs
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Block diagrams

in system analysis it is common and useful to represent systems by block diagrams

Single-input single-output

input output
(1) H ™ (1) = H{x(1)}

= input x(¢) is operated on by operator H to produce the output signal y ()

= the operator H could perform just about any operation imaginable

CT systems



Interconnected systems

a system is often described and analyzed as an assembly of components

x1(t)—=| Hi y1(1)

Hs

x2(1)
H3

= a component is a smaller, simpler system
— to a circuit designer, components are resistors, capacitors, inductors, operational
amplifiers and so on, and systems are power amplifiers, A/D converters, modulators,
filters and so forth
— to an automobile designer components are wheels, engines, bumpers, lights, seats and
the system is the automobile

Hy ——y2(1)

= by knowing the mathematical model of the components, an engineer can predict
the behavior (output) of the system
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Common block diagram operations

Ampilifier (scalar multiplication)

o a

_[>_ -
Summation (addition)
X—t@—»x—y x4t©—>x—y XJ@—>X—)}
y y y

(@) (®) (©)

Integrator

x(t) —— / N /_toox(l)dt
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Example 2.1

x(t) ¢ &~

) i
/
(O
(
/
c ]

y(1)

dy*? d
2 =alx(n) - [bZ +ey))
or

dy*

O @h) 2+ (ae)y (o) = ax()

CT systems
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Linear systems

asystem H is
= homogeneous if x — y, then ax — ay for any number
» additiveif x; — y1,and xo — yo, thenx; +x2 — y1 + y2
Linear systems: a system is linear if it is both homogeneous and additive

X1 —™ )1

Xog — Y2
then for any numbers a1, a2
@1X1 + @oXg — @1y1 + @2y2

the above is called the superposition property

classifications of CT systems
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Example 2.2

determine whether the following systems are linear or nonlinear

dy(1)

@ 20 5y =20
Y020 4350y = ()
¢) ¥(1) = ex(”

classifications of CT systems
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Solution:

(@) let y1(¢) and y5(t) to be the outputs for inputs x1 () and x5 (¢); then,

dy;t(t) +3y1(1) = x1(2) dyst(t) +3y2() = x2(1)

multiplying the first equation by @; and the second by a2 and adding, gives

d
E[alyl(t) + (l2y2(l)] + 3[&’1)’1(1‘) + (l’ng(l‘)] =Q1X] (l) + (ZQJCQ(Z‘),
which is the system equation with

x(f) = ayx1 (1) + azxa(1), y(t) = a1y1(t) + a2y2(1)

hence, superposition is satisfied and the system is linear

classifications of CT systems
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b) if x(#) — y(¢), then we have

020 350y = ()
multiplying by @, we have
v 2 4 30y = ax(0),
which is not equal to
oy 2O 30y = axtr

hence, the system is nonlinear

(c) for input ax(r), we have y (1) = e®*) £ ay(r)

classifications of CT systems
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Total response of a linear system

Decomposition property of linear systems

total response = zero-input response + zero-state response

Zero-input response (ZIR)
= ZIR is the output that results only from initial conditions at # = 0

= with zero input x(¢) =0 forz > 0

Zero-state response (ZSR)
= ZSR is the output that results from input x(t) fort > 0
= with zero initial conditions

= when all the initial conditions are zero, the system is said to be in zero state
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Example: for the circuit in slide 2.3 (with y = 0)

+ y(t)

x(1) C = V(1)

we have

1 t
y(t) ==ve(tg) + Rx(t) + —/ x(t)dr, t>=0
—— C to

ZIR

ZSR
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Linearity implication

if we can write x(¢) as

x(1) = a1x1(t) + @gxa(t) + - -+ + @pxp (1)
then if the system is linear, the output is

y() = ar1y1(t) + @2y2(t) + - + @ ym(2)

= yi (1) is the zero-state response to input xg (¢)

= we can find y(¢) by finding responses y(#) to the “simpler” components x (¢)

classifications of CT systems 215



Linearity implication

any signal can be approximated by a sum of rectangular pulses or step-functions

v b é

At (a) At (b)

if we know the system response to a unit impulse or unit step input, we can compute
the system response to any arbitrary input

classifications of CT systems 2.16



Time-invariant systems
a system is time invariant if for input-output x () — y(t), we have
x(t—10) = y(1—1o)

for any arbitrary 7, (assuming initial conditions are also delayed by ¢,)

x(t) y(1) Delay y(t=to)
— S - ———
t, seconds

(a)
x(1) Delay | X(1 —10) y(t —15)
—— S E—
t, seconds
(b)

= a system is time-varying if the the above does not hold

s CT system that is linear and time-invariant is called linear-time-invariant
continuous system (LTIC)
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Example 2.3

determine the time invariance of the following systems
@ y(@) =x()u(r)
d
b t)=—x(t
(0) y(1) = —x(1)

(©) y() = e "x(1)
(@ y() ="

classifications of CT systems
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Solution:

(a) input is modified by a time-dependent function u(¢) so the system is time-varying;
we can show this through a counterexample:

x1()=6(t+1) = yi(1)=0
xo(f) =x1(t=2)=6(t-1) = y2(1)=06(r-1)
since yo (1) # y1(t — 2) = 0, the system is time-varying

(b) forinput x(¢ —t,), we have output

ix(r —t,),

(t_to) = dt

d
y(t—1,) = mx

which is the output to a delayed input x(z — 7,,); hence, the system is time invariant

(c) the output with delayed input is e ™" x(f — t,,), which is not equal to the delayed
output e~ *~%) x (¢ — 1,)); hence, system is time-varying

(d) for input x(z — 1,), output is e**~%) = y(r — 1,,); hence system is time invariant
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Instantaneous and dynamic systems

Instantaneous (memoryless, static) system

= output at any time ¢ depends only on its input(s) at the same time ¢

= does not depend on any past or future values of the input(s)

Dynamic systems (with memory)

= output depends on future or past values of input(s)

= a finite-memory system with a memory T is a system whose output at  depends
only on the input signals over the past 7" seconds (from ¢t — T to ¢)
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Example 2.4

determine whether the following systems are memoryless:
@ y(r-1)=2x(r-1)
d
b 1) = —x(t
®) ¥(1) = —x(1)
(© y(1) = (t—1x(2)
Solution:
(a) memoryless since the output at any time depends on the input at the same time

(b) using the derivative definition

x(t)=x(t-T)

t)=1
y(®) TILI%J T

not memoryless since the output at # depends on more than just the input at ¢

(c) memoryless since the output at # depends only on the input at the same time

classifications of CT systems



Causal and noncausal systems

Causal systems

= output at ¢y depends only on the input x(¢) for ¢ < tq

= output does not depend on future input

Noncausal systems

= system that violates the condition of causality (i.e., output depend on future input)

= unrealizable in real time but can be realizable with time delay; for example, we can
prerecord data; in such cases, the input’s future values are available to us
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Example 2.5

determine whether the following systems are causal
@ y(1) =x(=1)

(o) y() =x(t+1)

© y(+1)=x()

Solution:
(@) outputatr = -1, y(=1) = x(1) depends on future input; hence not causal

(b) output at time ¢ depends on input at future ¢ + 1; thus, the system is not causal

(c) output at time ¢ + 1 depends only on past input; hence, causal

classifications of CT systems 223



Invertible and noninvertible systems

Invertible systems: a system is invertible if we can find the input x(¢) from the
corresponding output y(t)

= system that achieves the inverse operation is the inverse system for S

x(1) y(1) x(z)

—— S S; o

= every input have a unique output (one-to-one mapping between input and output)

Noninvertible systems

= a system is noninvertible when it is impossible to obtain the input from the output
(several different inputs result in the same output)

= examples: two inputs give same output
— rectifier: y(¢) = |x(2)|
- y(1) = sin(x(1))
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Example 2.6

determine whether the following systems are invertible
@ y(@) =x(-1)
(b) y(2) = 1x(2)
d
t)=—x(
© ¥(0) =S¥ (1)
t
@ y(1) = [ x(n)dr
Solution:
(a) since x(t) = y(—t) for all ¢, the system is invertible

(b) we have x(t) = %y(t) for all ¢ except t = 0; system is noninvertible since we
cannot recover x(0)

(c) since the derivative of constants are equal, the system is noninvertible; for
example, both x1(¢) =t + 1 and x5(¢) = ¢ — 5 give the same output

(d) invertible because the input can be obtained by taking the derivative of the output;
hence, the inverse system equation is y(z) = dx/dt
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BIBO stable systems

a system is bounded-input-bounded-output (BIBO) stable (externally stable) if every
bounded input results in a bounded output

Example: determine whether the following systems are BIBO-stable

(@) y(1) =x*()

(b) y(1) = 1x(2)

(©) y(1) = Fx()

Solution:

(a) system y(z) = x2(¢) is BIBO stable: if the input is bounded |x(¢)| < M, < oo,
then |y(1)| = [x*(1)| = [x(1)|> < M3 < o0

(b) the bounded-amplitude input x(z) = u(t) produces the output y(¢) = tu(t), which
grows to infinity as t — oo; thus system is a BIBO-unstable system

(c) the bounded-amplitude input x(#) = u(¢) produces the output y(¢) = §(¢) whose
amplitude is infinite at = 0; thus, the system is a BIBO-unstable
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Linear differential system

dNy(1) dN1y(1)

PP Sy +- - +any(t)
dMx (1) dM=1x(1)
= by L + by T + -+ bpx(1)

= order is highest derivative of output N

the system described by differential equation of the above form is linear

= the system is time-invariant if a;, b; are constants (independent of time)
= many practical systems can be modeled by linear differential equations

we assume that ag = 1 (if not, then we can always divide both sides by ag)

classifications of CT systems
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Differentiation notations

= the are several notation for differentiation:

dy(1)
dt ’

_ d?y(1) YN o M

y(@) =y'(1) = YO =y"(0) =5 =y

= for convenience, we often use D instead of d/dt:

() _ ()

d"y(1)
2 .
di W =D y(t), R VA

Dy(1), -5 =DM

= using the above, the linear differential system becomes
(agDY + a1 DV 4 v an)y(t) = (boDM + b DM 4 4 by)x(1)

Integration operation

[ stodr =50

(o)

classifications of CT systems 2.28



Outline

o CT systems
e classifications of CT systems

e modeling of basic systems



Basic electrical elements laws

Resistor
VR = iRR
Capacitor
dVC
ic=C—
¢ dt

1 t
vel(t) = E/ icdrt+ve(tg)

fo

Inductor

.

iL(l‘) = %/IVL dT+i(I0)

fo

modeling of basic systems
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Example 2.7

L=1H R=3Q
Y'Y Y l\/\/\/ o
+
+
x(1) C) @ ~ . ve(D)
- CZ?F
)

find the input-output equation relating the input voltage x(7) to the output current
(loop current) y(t)

modeling of basic systems
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Solution: KVL, gives
v (1) + vr(2) +ve(t) = x(1)

using voltage current-law for each element we obtain:

d);(tt) +3y(1) +2 /_oo y(r)dt = x(1)

differentiating both sides, we get the input-output relation:

d?y(tr) _dy(t)

7 3_ ay(r) = B0 dx(t)

we can write the above as
(D*+3D +2)y(t) = Dx(1)
if the inductor voltage v () is taken as the output, then

(D% +3D +2)v.(1) = D?x(1)

modeling of basic systems
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Example 2.8

R=150
AW o
+
x(1) i) I~ ()
C:gF
o

find the equation relating input-output if the input is the voltage x(¢) and output is
(a) the loop current i(¢)
(b) the capacitor voltage y(t)

modeling of basic systems
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Solution:
(a) the loop equation is

15i(7) +5/_t i(t)dr = x(t)

(o)

in operator notation, we have
15i(1) + > (1) = x(1)
Zir) =
D
multiplying both sides by D (i.e., differentiating the equation), we obtain
(15D +5)i(t) = Dx(¢)

0]

(b) usingi(t) = T

= 1Dy(1), we get
BD +1)y(r) =x(¢)
if the capacitor voltage v (1) is taken as the output, then

(D% +3D +2)ve (1) = 2x(1)

modeling of basic systems
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Mechanical translational laws

the basic elements used in modeling translational systems (moving along a straight
line) are ideal masses, linear springs, and dashpots providing viscous damping

Newton’s law of motion: a force x(t) on mass M causes a motion y(¢) and

acceleration (1)
ﬁ (1)
x(t) = My(1) = MD?y(1) (1)

—> M

modeling of basic systems 2.34



Linear spring: force x(¢) required to stretch (or compress) a linear spring with

stiffness K by amount y(#)

x(1) = Ky(1)

> (@

— x(1)

Linear dashpot: the force x(¢) moving the dashpot with damping coefficient B is
proportional to the relative velocity y(¢) of one surface with respect to the other

x(1) = B3 (1) = BDy (1)

modeling of basic systems

>y

—> x(1)
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Example 2.9

find the input-output relationship for the translational mechanical system shown
below; the input is the force x(¢), and the output is the mass position y ()

Frictionless

modeling of basic systems

K

—W—

’—> y(1)

—> x(1)

» B
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Solution: in mechanical systems it is helpful to draw a free-body diagram of each
junction, which is a point at which two or more elements are connected

’—> Y0

M > x(1)

Ky(t) <—

By (1) <——

from Newton’s second law, the net force must be

M3(1) = =By(1) = Ky (1) +x(2)
or

(MD? + BD + K)y(t) = x(1)
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Example 2.10 (car suspension system)

y(1) Fe

t 1

car mass 4M

F Fy

* *X(t) *B

pavement

= input x(¢) is vertical displacement of pavement (relative to ground level)

= output y(¢) is vertical displacement of the car chassis from its equilibrium position

» M is one-fourth of the car's mass, because the car has four wheels

modeling of basic systems
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= forces exerted by the spring F; and shock absorber F; depend on the relative
displacement (y — x) of the car relative to the pavement

= when (y — x) is positive (car mass moving away from the pavement), the spring
force F is directed downward; hence, Fy = —K(y — x)
imilarly, F, B d ( )
similarly, Fg = -B—(y — x
. Y, I'd a1 y

2
= using Newton’s law, F. = Ma = M%, the force equation is F, = Fs + F4 or
d?y

M_
dt?

d
=-K(y-x)—-B—(y -
(y-x) T (y—-x
which can be written as

d’y Bdy K Bdx K

w2 ma T T ma Tt

this is a second-order linear differential system

modeling of basic systems 2.39
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