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System

a system is an entity that processes input signals to provide output signals

■ a system that operates on CT-signals is a continuous-time systems

■ to excite a system means to apply energy that causes it to respond

■ a system can have multiple inputs and multiple outputs (MIMO)

𝑥1 (𝑡)

𝑥2 (𝑡)

𝑥 𝑗 (𝑡)

𝑦1 (𝑡)

𝑦2 (𝑡)

𝑦𝑘 (𝑡)

system
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Examples

■ amplifier: 𝑦(𝑡) = 𝛼𝑥(𝑡)

■ integrator: 𝑦(𝑡) =
∫ 𝑡
−∞ 𝑥(𝜏)𝑑𝜏

■ RC-circuit

the input current 𝑥(𝑡) and output voltage 𝑦(𝑡) are related by:

𝑦(𝑡) = 𝑅𝑥(𝑡) + 𝑣𝐶 (𝑡0) +
1

𝐶

∫ 𝑡

𝑡0

𝑥(𝜏)𝑑𝜏, 𝑡 ≥ 𝑡0
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System analysis and design

the study of systems consists of three major areas:

■ system modeling: the mathematical equations relating the outputs to the inputs
are called the system model

■ system analysis: how to determine the system outputs for the given inputs and a
given mathematical model of the system

■ system design (synthesis): how to construct a system that will produce a
desired set of outputs for the given inputs
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Block diagrams

in system analysis it is common and useful to represent systems by block diagrams

Single-input single-output

input
𝑥(𝑡)

output
𝑦(𝑡) = 𝐻{𝑥(𝑡)}𝐻

■ input 𝑥(𝑡) is operated on by operator 𝐻 to produce the output signal 𝑦(𝑡)

■ the operator 𝐻 could perform just about any operation imaginable
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Interconnected systems

a system is often described and analyzed as an assembly of components

𝐻1𝑥1 (𝑡) 𝑦1 (𝑡)

𝐻2

𝐻3

𝐻4

𝑥2 (𝑡)
𝑦2 (𝑡)

■ a component is a smaller, simpler system
– to a circuit designer, components are resistors, capacitors, inductors, operational

amplifiers and so on, and systems are power amplifiers, A/D converters, modulators,
filters and so forth

– to an automobile designer components are wheels, engines, bumpers, lights, seats and
the system is the automobile

■ by knowing the mathematical model of the components, an engineer can predict
the behavior (output) of the system

SA — EE312CT systems 2.6



Common block diagram operations

Amplifier (scalar multiplication)

𝛼 𝛼

Summation (addition)

𝑥 𝑥 − 𝑦

𝑦 𝑦 𝑦

𝑥 𝑥𝑥 − 𝑦 𝑥 − 𝑦

Integrator

𝑥(𝑡)
∫ 𝑡
−∞ 𝑥(𝑡)𝑑𝑡
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Example 2.1

𝑥(𝑡)

𝑦(𝑡)

𝑑𝑦
𝑑𝑡

𝑑2𝑦

𝑑𝑡2

𝑑𝑦2

𝑑𝑡2
= 𝑎

(
𝑥(𝑡) − [𝑏 𝑑𝑦

𝑑𝑡
+ 𝑐𝑦(𝑡)]

)
or

𝑑𝑦2

𝑑𝑡2
+ (𝑎𝑏) 𝑑𝑦

𝑑𝑡
+ (𝑎𝑐)𝑦(𝑡) = 𝑎𝑥(𝑡)
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Linear systems

a system 𝐻 is

■ homogeneous if 𝑥 → 𝑦, then 𝛼𝑥 → 𝛼𝑦 for any number 𝛼

■ additive if 𝑥1 → 𝑦1, and 𝑥2 → 𝑦2, then 𝑥1 + 𝑥2 → 𝑦1 + 𝑦2

Linear systems: a system is linear if it is both homogeneous and additive

𝑥1 −→ 𝑦1

𝑥2 −→ 𝑦2

then for any numbers 𝛼1, 𝛼2

𝛼1𝑥1 + 𝛼2𝑥2 −→ 𝛼1𝑦1 + 𝛼2𝑦2

the above is called the superposition property
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Example 2.2

determine whether the following systems are linear or nonlinear

(a)
𝑑𝑦(𝑡)
𝑑𝑡

+ 3𝑦(𝑡) = 𝑥(𝑡)

(b) 𝑦(𝑡) 𝑑𝑦(𝑡)
𝑑𝑡

+ 3𝑦(𝑡) = 𝑥(𝑡)

(c) 𝑦(𝑡) = 𝑒𝑥 (𝑡 )
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Solution:

(a) let 𝑦1 (𝑡) and 𝑦2 (𝑡) to be the outputs for inputs 𝑥1 (𝑡) and 𝑥2 (𝑡); then,

𝑑𝑦1 (𝑡)
𝑑𝑡

+ 3𝑦1 (𝑡) = 𝑥1 (𝑡)
𝑑𝑦2 (𝑡)
𝑑𝑡

+ 3𝑦2 (𝑡) = 𝑥2 (𝑡)

multiplying the first equation by 𝛼1 and the second by 𝛼2 and adding, gives

𝑑

𝑑𝑡
[𝛼1𝑦1 (𝑡) + 𝛼2𝑦2 (𝑡)] + 3[𝛼1𝑦1 (𝑡) + 𝛼2𝑦2 (𝑡)] = 𝛼1𝑥1 (𝑡) + 𝛼2𝑥2 (𝑡),

which is the system equation with

𝑥(𝑡) = 𝛼1𝑥1 (𝑡) + 𝛼2𝑥2 (𝑡), 𝑦(𝑡) = 𝛼1𝑦1 (𝑡) + 𝛼2𝑦2 (𝑡)

hence, superposition is satisfied and the system is linear
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(b) if 𝑥(𝑡) → 𝑦(𝑡), then we have

𝑦(𝑡) 𝑑𝑦(𝑡)
𝑑𝑡

+ 3𝑦(𝑡) = 𝑥(𝑡)

multiplying by 𝛼, we have

𝛼𝑦(𝑡) 𝑑𝑦(𝑡)
𝑑𝑡

+ 3𝛼𝑦(𝑡) = 𝛼𝑥(𝑡),

which is not equal to

𝛼𝑦(𝑡) 𝑑 [𝛼𝑦(𝑡)]
𝑑𝑡

+ 3𝛼𝑦(𝑡) = 𝛼𝑥(𝑡)

hence, the system is nonlinear

(c) for input 𝛼𝑥(𝑡), we have 𝑦(𝑡) = 𝑒𝛼𝑥 (𝑡 ) ≠ 𝛼𝑦(𝑡)
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Total response of a linear system

Decomposition property of linear systems

total response = zero-input response + zero-state response

Zero-input response (ZIR)

■ ZIR is the output that results only from initial conditions at 𝑡 = 0

■ with zero input 𝑥(𝑡) = 0 for 𝑡 ≥ 0

Zero-state response (ZSR)

■ ZSR is the output that results from input 𝑥(𝑡) for 𝑡 ≥ 0

■ with zero initial conditions

■ when all the initial conditions are zero, the system is said to be in zero state
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Example: for the circuit in slide 2.3 (with 𝑡0 = 0)

we have

𝑦(𝑡) = = 𝑣𝐶 (𝑡0)︸ ︷︷ ︸
ZIR

+ 𝑅𝑥(𝑡) + 1

𝐶

∫ 𝑡

𝑡0

𝑥(𝜏)𝑑𝜏︸                       ︷︷                       ︸
ZSR

, 𝑡 ≥ 0
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Linearity implication

if we can write 𝑥(𝑡) as

𝑥(𝑡) = 𝛼1𝑥1 (𝑡) + 𝛼2𝑥2 (𝑡) + · · · + 𝛼𝑚𝑥𝑚 (𝑡)

then if the system is linear, the output is

𝑦(𝑡) = 𝛼1𝑦1 (𝑡) + 𝛼2𝑦2 (𝑡) + · · · + 𝛼𝑚𝑦𝑚 (𝑡)

■ 𝑦𝑘 (𝑡) is the zero-state response to input 𝑥𝑘 (𝑡)

■ we can find 𝑦(𝑡) by finding responses 𝑦𝑘 (𝑡) to the “simpler” components 𝑥𝑘 (𝑡)
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Linearity implication

any signal can be approximated by a sum of rectangular pulses or step-functions

if we know the system response to a unit impulse or unit step input, we can compute
the system response to any arbitrary input
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Time-invariant systems

a system is time invariant if for input-output 𝑥(𝑡) → 𝑦(𝑡), we have

𝑥(𝑡 − 𝑡𝑜) → 𝑦(𝑡 − 𝑡𝑜)

for any arbitrary 𝑡𝑜 (assuming initial conditions are also delayed by 𝑡𝑜)

𝑥 (𝑡 )

𝑥 (𝑡 )

𝑦 (𝑡 )

𝑥 (𝑡 − 𝑡𝑜 )

𝑦 (𝑡 − 𝑡𝑜 )

𝑦 (𝑡 − 𝑡𝑜 )

Delay
𝑡𝑜 seconds

Delay
𝑡𝑜 seconds

■ a system is time-varying if the the above does not hold

■ CT system that is linear and time-invariant is called linear-time-invariant
continuous system (LTIC)
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Example 2.3

determine the time invariance of the following systems

(a) 𝑦(𝑡) = 𝑥(𝑡)𝑢(𝑡)

(b) 𝑦(𝑡) = 𝑑

𝑑𝑡
𝑥(𝑡)

(c) 𝑦(𝑡) = 𝑒−𝑡𝑥(𝑡)

(d) 𝑦(𝑡) = 𝑒𝑥 (𝑡 )
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Solution:

(a) input is modified by a time-dependent function 𝑢(𝑡) so the system is time-varying;
we can show this through a counterexample:

𝑥1 (𝑡) = 𝛿(𝑡 + 1) =⇒ 𝑦1 (𝑡) = 0

𝑥2 (𝑡) = 𝑥1 (𝑡 − 2) = 𝛿(𝑡 − 1) =⇒ 𝑦2 (𝑡) = 𝛿(𝑡 − 1)

since 𝑦2 (𝑡) ≠ 𝑦1 (𝑡 − 2) = 0, the system is time-varying

(b) for input 𝑥(𝑡 − 𝑡𝑜), we have output

𝑦(𝑡 − 𝑡𝑜) =
𝑑

𝑑 (𝑡 − 𝑡𝑜)
𝑥(𝑡 − 𝑡𝑜) =

𝑑

𝑑𝑡
𝑥(𝑡 − 𝑡𝑜),

which is the output to a delayed input 𝑥(𝑡 − 𝑡𝑜); hence, the system is time invariant

(c) the output with delayed input is 𝑒−𝑡𝑥(𝑡 − 𝑡𝑜), which is not equal to the delayed
output 𝑒−(𝑡−𝑡𝑜 )𝑥(𝑡 − 𝑡𝑜); hence, system is time-varying

(d) for input 𝑥(𝑡 − 𝑡𝑜), output is 𝑒𝑥 (𝑡−𝑡𝑜 ) = 𝑦(𝑡 − 𝑡𝑜); hence system is time invariant
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Instantaneous and dynamic systems

Instantaneous (memoryless, static) system

■ output at any time 𝑡 depends only on its input(s) at the same time 𝑡

■ does not depend on any past or future values of the input(s)

Dynamic systems (with memory)

■ output depends on future or past values of input(s)

■ a finite-memory system with a memory 𝑇 is a system whose output at 𝑡 depends
only on the input signals over the past 𝑇 seconds (from 𝑡 − 𝑇 to 𝑡)
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Example 2.4

determine whether the following systems are memoryless:

(a) 𝑦(𝑡 − 1) = 2𝑥(𝑡 − 1)

(b) 𝑦(𝑡) = 𝑑

𝑑𝑡
𝑥(𝑡)

(c) 𝑦(𝑡) = (𝑡 − 1)𝑥(𝑡)

Solution:

(a) memoryless since the output at any time depends on the input at the same time

(b) using the derivative definition

𝑦(𝑡) = lim
𝑇→0

𝑥(𝑡) − 𝑥(𝑡 − 𝑇)
𝑇

not memoryless since the output at 𝑡 depends on more than just the input at 𝑡

(c) memoryless since the output at 𝑡 depends only on the input at the same time
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Causal and noncausal systems

Causal systems

■ output at 𝑡0 depends only on the input 𝑥(𝑡) for 𝑡 ≤ 𝑡0
■ output does not depend on future input

Noncausal systems

■ system that violates the condition of causality (i.e., output depend on future input)

■ unrealizable in real time but can be realizable with time delay; for example, we can
prerecord data; in such cases, the input’s future values are available to us
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Example 2.5

determine whether the following systems are causal

(a) 𝑦(𝑡) = 𝑥(−𝑡)
(b) 𝑦(𝑡) = 𝑥(𝑡 + 1)
(c) 𝑦(𝑡 + 1) = 𝑥(𝑡)

Solution:

(a) output at 𝑡 = −1, 𝑦(−1) = 𝑥(1) depends on future input; hence not causal

(b) output at time 𝑡 depends on input at future 𝑡 + 1; thus, the system is not causal

(c) output at time 𝑡 + 1 depends only on past input; hence, causal
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Invertible and noninvertible systems

Invertible systems: a system is invertible if we can find the input 𝑥(𝑡) from the
corresponding output 𝑦(𝑡)

■ system that achieves the inverse operation is the inverse system for 𝑆

𝑥 (𝑡 ) 𝑥 (𝑡 )𝑦 (𝑡 )

■ every input have a unique output (one-to-one mapping between input and output)

Noninvertible systems

■ a system is noninvertible when it is impossible to obtain the input from the output
(several different inputs result in the same output)

■ examples: two inputs give same output
– rectifier: 𝑦(𝑡) = |𝑥(𝑡) |
– 𝑦(𝑡) = sin(𝑥(𝑡))
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Example 2.6

determine whether the following systems are invertible

(a) 𝑦(𝑡) = 𝑥(−𝑡)
(b) 𝑦(𝑡) = 𝑡𝑥(𝑡)

(c) 𝑦(𝑡) = 𝑑

𝑑𝑡
𝑥(𝑡)

(d) 𝑦(𝑡) =
∫ 𝑡
−∞ 𝑥(𝜏)𝑑𝜏

Solution:

(a) since 𝑥(𝑡) = 𝑦(−𝑡) for all 𝑡, the system is invertible

(b) we have 𝑥(𝑡) = 1
𝑡
𝑦(𝑡) for all 𝑡 except 𝑡 = 0; system is noninvertible since we

cannot recover 𝑥(0)
(c) since the derivative of constants are equal, the system is noninvertible; for

example, both 𝑥1 (𝑡) = 𝑡 + 1 and 𝑥2 (𝑡) = 𝑡 − 5 give the same output

(d) invertible because the input can be obtained by taking the derivative of the output;
hence, the inverse system equation is 𝑦(𝑡) = 𝑑𝑥/𝑑𝑡
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BIBO stable systems

a system is bounded-input-bounded-output (BIBO) stable (externally stable) if every
bounded input results in a bounded output

Example: determine whether the following systems are BIBO-stable

(a) 𝑦(𝑡) = 𝑥2 (𝑡)
(b) 𝑦(𝑡) = 𝑡𝑥(𝑡)
(c) 𝑦(𝑡) = 𝑑

𝑑𝑡
𝑥(𝑡)

Solution:

(a) system 𝑦(𝑡) = 𝑥2 (𝑡) is BIBO stable: if the input is bounded |𝑥(𝑡) | ≤ 𝑀𝑥 < ∞,
then |𝑦(𝑡) | = |𝑥2 (𝑡) | = |𝑥(𝑡) |2 ≤ 𝑀2

𝑥 < ∞

(b) the bounded-amplitude input 𝑥(𝑡) = 𝑢(𝑡) produces the output 𝑦(𝑡) = 𝑡𝑢(𝑡), which
grows to infinity as 𝑡 → ∞; thus system is a BIBO-unstable system

(c) the bounded-amplitude input 𝑥(𝑡) = 𝑢(𝑡) produces the output 𝑦(𝑡) = 𝛿(𝑡) whose
amplitude is infinite at 𝑡 = 0; thus, the system is a BIBO-unstable
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Linear differential system

𝑎0
𝑑𝑁 𝑦(𝑡)
𝑑𝑡𝑁

+ 𝑎1
𝑑𝑁−1𝑦(𝑡)
𝑑𝑡𝑁−1 + · · · + 𝑎𝑁 𝑦(𝑡)

= 𝑏0
𝑑𝑀𝑥(𝑡)
𝑑𝑡𝑀

+ 𝑏1
𝑑𝑀−1𝑥(𝑡)

𝑑𝑡
+ · · · + 𝑏𝑀𝑥(𝑡)

■ order is highest derivative of output 𝑁

■ the system described by differential equation of the above form is linear

■ the system is time-invariant if 𝑎𝑖 , 𝑏𝑖 are constants (independent of time)

■ many practical systems can be modeled by linear differential equations

■ we assume that 𝑎0 = 1 (if not, then we can always divide both sides by 𝑎0)
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Differentiation notations

■ the are several notation for differentiation:

¤𝑦(𝑡) = 𝑦′ (𝑡) := 𝑑𝑦(𝑡)
𝑑𝑡

, ¥𝑦(𝑡) = 𝑦′′ (𝑡) := 𝑑2𝑦(𝑡)
𝑑𝑡2

, . . . , 𝑦 (𝑁 ) :=
𝑑𝑁 𝑦(𝑡)
𝑑𝑡𝑁

■ for convenience, we often use 𝐷 instead of 𝑑/𝑑𝑡:

𝑑𝑦(𝑡)
𝑑𝑡

:= 𝐷𝑦(𝑡), 𝑑2𝑦(𝑡)
𝑑𝑡2

:= 𝐷2𝑦(𝑡), . . . ,
𝑑𝑁 𝑦(𝑡)
𝑑𝑡𝑁

:= 𝐷𝑁 𝑦(𝑡)

■ using the above, the linear differential system becomes

(𝑎0𝐷𝑁 + 𝑎1𝐷𝑁−1 + · · · + 𝑎𝑁 )𝑦(𝑡) = (𝑏0𝐷𝑀 + 𝑏1𝐷𝑀−1 + · · · + 𝑏𝑀 )𝑥(𝑡)

Integration operation ∫ 𝑡

−∞
𝑦(𝜏)𝑑𝜏 := 1

𝐷
𝑦(𝑡)
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Basic electrical elements laws

Resistor

𝑣𝑅 = 𝑖𝑅𝑅

𝑅

𝑉𝑅

𝑖𝑅

Capacitor

𝑖𝐶 = 𝐶
𝑑𝑣𝐶

𝑑𝑡

𝑣𝐶 (𝑡) =
1

𝐶

∫ 𝑡

𝑡0

𝑖𝐶 𝑑𝜏 + 𝑣𝐶 (𝑡0)

𝐶

𝑣𝐶

𝑖𝐶

Inductor

𝑣𝐿 = 𝐿
𝑑𝑖𝐿

𝑑𝑡

𝑖𝐿 (𝑡) =
1

𝐿

∫ 𝑡

𝑡0

𝑣𝐿 𝑑𝜏 + 𝑖(𝑡0)

𝐿

𝑣𝐿

𝑖𝐿

SA — EE312modeling of basic systems 2.29



Example 2.7

find the input-output equation relating the input voltage 𝑥(𝑡) to the output current
(loop current) 𝑦(𝑡)
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Solution: KVL, gives

𝑣𝐿 (𝑡) + 𝑣𝑅 (𝑡) + 𝑣𝐶 (𝑡) = 𝑥(𝑡)

using voltage current-law for each element we obtain:

𝑑𝑦(𝑡)
𝑑𝑡

+ 3𝑦(𝑡) + 2

∫ 𝑡

−∞
𝑦(𝜏)𝑑𝜏 = 𝑥(𝑡)

differentiating both sides, we get the input-output relation:

𝑑2𝑦(𝑡)
𝑑𝑡2

+ 3
𝑑𝑦(𝑡)
𝑑𝑡

+ 2𝑦(𝑡) = 𝑑𝑥(𝑡)
𝑑𝑡

we can write the above as

(𝐷2 + 3𝐷 + 2)𝑦(𝑡) = 𝐷𝑥(𝑡)

if the inductor voltage 𝑣𝐿 (𝑡) is taken as the output, then

(𝐷2 + 3𝐷 + 2)𝑣𝐿 (𝑡) = 𝐷2𝑥(𝑡)
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Example 2.8

find the equation relating input-output if the input is the voltage 𝑥(𝑡) and output is

(a) the loop current 𝑖(𝑡)
(b) the capacitor voltage 𝑦(𝑡)
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Solution:

(a) the loop equation is

15𝑖(𝑡) + 5

∫ 𝑡

−∞
𝑖(𝜏)𝑑𝜏 = 𝑥(𝑡)

in operator notation, we have

15𝑖(𝑡) + 5

𝐷
𝑖(𝑡) = 𝑥(𝑡)

multiplying both sides by 𝐷 (i.e., differentiating the equation), we obtain

(15𝐷 + 5)𝑖(𝑡) = 𝐷𝑥(𝑡)

(b) using 𝑖(𝑡) = 𝐶 𝑑𝑦(𝑡)
𝑑𝑡

= 1
5𝐷𝑦(𝑡), we get

(3𝐷 + 1)𝑦(𝑡) = 𝑥(𝑡)

if the capacitor voltage 𝑣𝐶 (𝑡) is taken as the output, then

(𝐷2 + 3𝐷 + 2)𝑣𝐶 (𝑡) = 2𝑥(𝑡)
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Mechanical translational laws

the basic elements used in modeling translational systems (moving along a straight
line) are ideal masses, linear springs, and dashpots providing viscous damping

Newton’s law of motion: a force 𝑥(𝑡) on mass 𝑀 causes a motion 𝑦(𝑡) and
acceleration ¥𝑦(𝑡)

𝑥(𝑡) = 𝑀 ¥𝑦(𝑡) = 𝑀𝐷2𝑦(𝑡)
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Linear spring: force 𝑥(𝑡) required to stretch (or compress) a linear spring with
stiffness 𝐾 by amount 𝑦(𝑡)

𝑥(𝑡) = 𝐾𝑦(𝑡)

Linear dashpot: the force 𝑥(𝑡) moving the dashpot with damping coefficient 𝐵 is
proportional to the relative velocity ¤𝑦(𝑡) of one surface with respect to the other

𝑥(𝑡) = 𝐵 ¤𝑦(𝑡) = 𝐵𝐷𝑦(𝑡)
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Example 2.9

find the input-output relationship for the translational mechanical system shown
below; the input is the force 𝑥(𝑡), and the output is the mass position 𝑦(𝑡)
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Solution: in mechanical systems it is helpful to draw a free-body diagram of each
junction, which is a point at which two or more elements are connected

from Newton’s second law, the net force must be

𝑀 ¥𝑦(𝑡) = −𝐵 ¤𝑦(𝑡) − 𝐾𝑦(𝑡) + 𝑥(𝑡)

or

(𝑀𝐷2 + 𝐵𝐷 + 𝐾)𝑦(𝑡) = 𝑥(𝑡)
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Example 2.10 (car suspension system)

𝑦 (𝑡 ) 𝐹𝑐

𝑥 (𝑡 )

𝐹𝑠 𝐹𝑑

𝐾 𝐵

car mass 4𝑀

tires

pavement

■ input 𝑥(𝑡) is vertical displacement of pavement (relative to ground level)

■ output 𝑦(𝑡) is vertical displacement of the car chassis from its equilibrium position

■ 𝑀 is one-fourth of the car’s mass, because the car has four wheels
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■ forces exerted by the spring 𝐹𝑠 and shock absorber 𝐹𝑑 depend on the relative
displacement (𝑦 − 𝑥) of the car relative to the pavement

■ when (𝑦 − 𝑥) is positive (car mass moving away from the pavement), the spring
force 𝐹𝑠 is directed downward; hence, 𝐹𝑠 = −𝐾 (𝑦 − 𝑥)

■ similarly, 𝐹𝑑 = −𝐵 𝑑
𝑑𝑡

(𝑦 − 𝑥)

■ using Newton’s law, 𝐹𝑐 = 𝑀𝑎 = 𝑀
𝑑2𝑦

𝑑𝑡2
, the force equation is 𝐹𝑐 = 𝐹𝑠 + 𝐹𝑑 or

𝑀
𝑑2𝑦

𝑑𝑡2
= −𝐾 (𝑦 − 𝑥) − 𝐵 𝑑

𝑑𝑡
(𝑦 − 𝑥)

which can be written as

𝑑2𝑦

𝑑𝑡2
+ 𝐵

𝑀

𝑑𝑦

𝑑𝑡
+ 𝐾

𝑀
𝑦 =

𝐵

𝑀

𝑑𝑥

𝑑𝑡
+ 𝐾

𝑀
𝑥

this is a second-order linear differential system
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