EE312 (Fall 2024) S. Alghunaim
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Continuous-time signal

a continuous-time (CT) signal is a function x(t) defined at every time ¢

= Vvoltage, current, audio signals
= light intensity variations in an optical fiber
= position or velocity of moving object
a continuous-time function is not the same as continuous function

g(1)

1L o
il

point of discontinuity of g (¢)
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Sinusoids and exponentials

Sinusoids
x(t) = Acos(2n ft +6)

f is the (cyclic) frequency (in Hertz); T = 1/ f is the period

= A is the amplitude and 6 is the phase (in degrees or radians)

w =2nf = 2n/T is the radian frequency

= other form: A sin(wt +0) = A cos(wt +0 — 1/2)
Exponentials
x(1) = A’ = AeTH @)1

= Ae?"(coswt + j sin wi)

= § =0 + jw is called complex frequency
= |w| is called radian frequency or frequency of oscillation

» O is the decay rate or neper frequency

continuous-time signals 1.3



Signals in terms of exponentials

= constant: k = ke% (s = 0)

= monotonic exponential: ¢’ (w = 0)

» sinusoid: cos wt = Re(e*/ ") (0 =0, w = +jw)

= exponentially varying sinusoid: ¢’ coswt (s = o + jw)

et cos wt

N NN
/\/ \/\

e cos wt

o<0
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Adding sinusoids with same frequency

the phasor of the sinusoid A cos(wt + 6) is the complex number Ae/% = A/8

Adding sinusoids

» adding sinusoids with the same frequency can be done via trigonometric identities
or phasors

A1 cos(wt + 01) + As cos(wt + 03) = A cos(wt + 0)
= A and 6 can computed by using phasors:

Alejel + A26192 = Aé‘]g

Example: find cos(wt + 60°) + 5 cos(wt — 30?)

. . e rao
= we have ¢/60° 4+ 5¢7730° = 5,099 /1869

» therefore,

cos(wt +60°) + 5 cos(wt — 30°%) = 5.099 cos(wt — 18.69°)
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Causal signals

a signal x(t) is causal if
x(t)=0 fort <0
= causal signals do not start before t = 0
= asignal x(¢) is anticausalif x(1) =0, t > 0
= a signal that has value before and after ¢ = 0 is called noncausal

= a signal that exists over —co < t < oo is called everlasting signal

x() x(1) x(?)
anticausal noncausal causal
0 ¢ 0 P 0 P
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Periodic and aperiodic signals

a signal x(t) is periodic if for some positive constant T

x(t)=x(t+T) forallt

= smallest T is called (fundamental) period of x(t), denoted by T

fo = 1/Ty is cyclic frequency; wg = 27 fy is radian frequency

= a periodic signal must be an everlasting signal

property: areas under x(¢) over any interval of duration T are equal

/aMTOx(t) dtszwox(t) d;é/Tx(t) dt

= a signal is aperiodic if it is not periodic

continuous-time signals 1.7



Sum of periodic signals

x(1) = x1(2) +x2(1)
» x1(2) and x5 (¢) are is periodic with periods Ty; and Tpo

= x(?) is periodic with period T if T is an integer multiple of 71 and Tpo:
qTo1 = pToa forintegers p, g
Fundamental period of x(¢) is the least common muitiple (LCM) of Ty1, Ty
To = LCM(To1, To2)
n if Tg1 /Tys is a rational number, then x(7) is periodic; otherwise, it is aperiodic
w if To1/To2 = po/qo for some integers pg and qg in smallest form, then

Ty = LCM(To1, To2) = q0To1 = poTo2

continuous-time signals



Example 1.1

 signal x(¢) = 3 + ¢2 is aperiodic
» signal x(z) = e 7597 can be expressed as a sum of two periodic signals
x(t) = cos(60nt) — j sin(607t)
with the same fundamental period To1 = Toz = 27/60m = 55; thus, Ty = 55

= the signal x(¢) = 10 sin(12xt) + 4 cos(187t) is the sum of two periodic functions
with Ty1 = 1/6 second and Tpo = 1/9 second; we have

To1/To2 = 2 =2 = Ty =LOM(%, §) = 2Tp1 = 3Tp2 = 1/3

11
6°9
= the signal x(7) = 10sin(12x1) + 4 cos(18t¢) is the sum of two periodic functions

with Tp1 = 1/6 second and Ty = /9 seconds; the ratio Ty1 /To2 = 27/3 is
irrational; therefore x(¢) is aperiodic

continuous-time signals 1.9



Piecewise signals

a piecewise signal is a function with different expressions over different intervals

Example
x1(t) x2(1)
1 1
1 2 3
1] ! ‘ i3 3!
1 0<r<1 t 0<t<1
x1(t)=4-1/2 1<tr<2 xo(t) =9-(t=2) 1<r<2
0 otherwise 0 otherwise

continuous-time signals
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Example 1.2

find and sketch /_too x1(7)dT and f_too xo(7)dT for the signals x1 (t) and x2(¢)

x1(1) x2(1)
1 1
1 2 3 .
_%,74 ‘ 1 2 3
Solution:

, t 0<t<l1 12/2 0<t<1
/ x1(7)dt = %—%t 1<t<2, / x2(7)dt = —(%—2t+1) 1<t<2
- 12 22 - 1 1>2

[ xi(0) [ xa2(1)
1 1
1
2
1

continuous-time signals
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Time shifting

signals can be shifted to the right or left by ¢ty > 0 seconds:
x(t —tg) right-shifted (delayed) signal
x(t +1y) left-shifted (advanced) signal

x(t)
w /\\
t T‘l } 0 p
x(t —to)
(b) /\ T~
‘ ‘ ‘ 0 t
T +to
x(t+1g)
(c)
— } } 0 7

T 1o
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Example 1.3

x(t)

-2t

e2 >0
1) =
*(®) {o <0

sketch and give and expression of x(¢) delayed by 1 and advanced by 1

signal operations
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Solution:

x(t-1)
1
t
x(t+1)
| 0
20D 120
x(t=1)= ¢ -
0 t—1<0
20+ r 4 1>0
i+ =1° -
0 t+1<0

signal operations
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Time scaling

time scaling is the compression or expansion of a signal in time:

¢(t) = x(at) compression by factor @ > 1

¢(t) = x(t/a) expansion by factor @ > 1

x(1)
Ty 10 T2 .
¢ (1)i=x(21)
ol o .
o(1) =x(1/2)
2T 0 2T>
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Example 1.4

— 24 x(7)

2¢71/2

sketch and give an expression for x(¢) time-compressed by factor 3 and
time-expanded by factor 2

signal operations
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Solution:

2 -1.5<t<0
x() =422 0<r<3
0 otherwise

compressed signal

2
xe (1) = x(31) = 1 2¢731/2
0
expanded signal
2
Xe(t) = x(1/2) = {2¢71/4
0

signal operations

-1.5<3t<0
0<3t<3

otherwise

-1.5<1t/2<0
0<t/2<3

otherwise

2{ x(1)
2¢t/2
-15 0 3 t
xe (1)
2
28—3t/2
-05]0 1 i3
) Xe (1)
2e71/4
-3 0 6 t
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Time reversal

time-reversal is the reflection about the vertical axis

¢(1) = x(-1)

x(t)

~

¢ (1) = x(=1)
2

signal operations
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Example 1.5

sketch and mathematically describe x(—t)

signal operations
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Solution:

t/2 x(1)

e'? —5<r<-1
x(t) =
0 otherwise

(1) e? 5<—r<-1(1<t<5H)
x(—1) =
0 otherwise

signal operations 1.20



Combined operations

x(ar —to) =x (a(t — 2))

1. time shift, then time scale the shifted signal

time shift by 7o time scale by
x(1) = x(t—1ty) = x(at —tg)

2. time scale, then time shift

time scale by « time shift by tg/ @
x(t) = x(ar) = x(at —tg)

Other form

(5

time scale by 1/ a time shift by 7o (t — 1 )
X

x(1) = x(t/a =
a

signal operations 1.21



Example 1.6

sketch 3x(—2f — 1) from x(¢)

x(1)
1 [
a b d e P
-1 T
3x(1) \
3 c amplitude scaling
a b | ld_e t
1
3x(r-1) \
[ 1 A time shifting
a b d e P
2
3x(-2tr-1) \
_ 13 time scaling
d| b
e a P

signal operations
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sketch —2x(2) from x(1)

Example 1.7

x(t)
c 11d e
ab] | |r g
I I i \
2 2 ! '
—2x(t) amplitude scaling
1 1
a 2 2 g
b T ! \
c df-2 time scaling
—2x(t/4)
a -2 2 g
b f
c = e \
42 time shifting
—2x(572) /
a —4 g
b T t
c d e-2

signal operations
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Unit step

u(t)

unit step function: |

1 >0
u(t) =
® {0 t<0
0 1
= u(?) is sometimes defined as

1 >0

u(t) =405 t=0

0 t<0

which is convenient for theoretical purposes

= for real-world signals applications however, it makes no practical difference

1.24
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Unit-step and causal signals

unit-step is useful to describe causal signals
w e y(t)iszerofort <Qande % fort >0

= similarly for cos(2nt)u(t)

1 cos(2nt)u(t)
e Uy (t) 1 /\
HRAVARY
0 J l
Unit ramp
>0 ramp(?)
t)=tu(t) =
ramp(t) = tu(r) {Otso 1

= [; u(t)dr ] '

useful CT signals 1.25



Shifting and reversal of unit step

Shifted step: a step signal equal to K that occurs at = a is expressed as

0 r<
Ku(t—a):{ “
K t>a
Ku(t - a)
K _____
| t
0 a

Shifted and reversed step: a step signal equal to K for t < a is written as

K t<a
0 t>a

Ku(a—1) ={

K Ku(a-t)

useful CT signals



Rectangular pulse

a rectangular pulse from t1 to t5 can be represented as u(t — t1) — u(t —t2)

Examples
= rectangular pulse from 2 to 4

X =u(=2) -ut-4) u(t - 2)

- T —u(r-4)

(a) (b)

= the unit rectangle (unit gate) is defined as

rect(¢) =TI(z)
rect(r) =TI(t) =u(t+ %) —u(t - 3) 1
1 i<t
0, |t 2% B 1 p

useful CT signals
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Piecewise functions and unit step

unit step can be used to describe piecewise functions using a single expression
Example

—24 x(7)

2e71/2

—-1.5 0 3 t

we can describe the signal x(¢) by a single expression valid for all ¢:

x(£) = 2[u(t + 1.5) — u()] +2¢ 7 [u(t) — u(t - 3)]

constant part exponential part

=2u(t +1.5) = 2(1 — e ?)u(r) — 2¢7"2u(r - 3)

useful CT signals
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Example 1.8

describe the signal x(#) using the unit step function

useful CT signals
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Solution:

x1(t

) ; ()

[

0 2 0 2 t
x2 (1)

N l\

1

0 0 2 3t

using line equation x = mt + b and unit step functions, the signal can represented as

an addition of two components:

x1(1) = t{u(t) —u(t - 2)],

therefore,

xo(t) = =2(t —3)[u(t —2) —u(t - 3)]

x() =x1(t) +x2(2) = tu(t) — 3(t — 2)u(t — 2) + 2(¢t — 3)u(t — 3)

useful CT signals
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Unit impulse

a unit impulse or (Dirac’s) delta function (t) is an idealization of a signal that has unit
area, very large near t = 0, and very small otherwise

5(1)

Q=

lo ! -5l

S

= other forms of approximation can be used such as triangular; the shape is not
important but the area is important

= (1) satisfies the property:

6(t)=0, t+#0, and / 6(t)dr=1

(o)

undefined at r = 0 (not mathematically rigorous)

useful CT signals 1.31



Properties of the impulse function

Product with impulse: for any function g(¢) continuous at ¢,
8(1)6(t —1o) = g(t0)6( — to)
Sampling (sifting) property
5]
[ ewot-ma=gw) 1 <n<

51

(here, the impulse is defined as a generalized function (distribution), which is a
function defined by its effect on other functions)

Scaling property
1

6(a(t —19)) = il

o(t - tg)

useful CT signals 1.32



Unit impulse and step relation

%u(l—to) =6(t—tg) and u(t-—tg) :/t o(t —tg)dr

Intuition

x(1) x'(t)

S}
0~
L8] (8]

masa — 0x(z) » u(r) and x’(t) — (1)
= &(1) is called the generalized derivative of u(t)

useful CT signals 1.33



The first derivative of the impulse function

x(t)
1/e

t
— 0l €

x'(1)

1/52

T
I
I
I
—e 0] ¢
I
—1/62

= x(?) is an impulse-generating function: x(z) — 6(t) ase — 0
= x’(t) is derivative of this impulse-generating function

= 8’(t) is defined as x’(t) as € — 0; (6’ (¢) is called a moment or unit doublet

function)
useful CT signals 1.34



Matlab plotting example

for x(t) = e~'u(t), the following Matlab code plots
y(t) = x(%ﬂg’) —(3/4)x(t—1) over —15<t<45

Matlab code

u = @(t) 1.0%x(t>0);
x = 0(t) exp(-t).*xu(t); y = @(t) x((-t+3)/3)-3/4*x(t-1);
t (-1.5:.0001:4.5); plot(t,y(t),’k’);

xlabel(’t’); ylabel(’y(t)’); grid on;

1

0.8

06

useful CT signals
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Even and odd signals

Even signal: an even signal x.(t) is symmetrical about the vertical axis

Xe (1) = x.(-1)

0Odd signal: an odd signal x, (t) is antisymmetrical about the vertical axis

X (1) = —=x0(=1)

Xo (1)

Ye (t) even odd

—a

2[ ! \ |

even and odd signals
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Properties

even function X even function = even function
odd function X odd function = even function

even function X odd function = odd function

Area

= for even functions

axe(t)dt =2 axe(t)dt
[ rewa=2 ]
/: Xo(t)dt =0

(under the assumption that there is no impulse at the origin)

» for odd function

even and odd signals
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Even and odd decomposition

every signal x(¢) can decomposed into an even and odd components:

x(1) = 3 [x(0) +x(=0)] + 5 [x(1) = x(-1)]

even part odd part

Examples
w e/t = x. (1) + x, (1) with

xe(t) =4[/ + e =cost  x,(1) =3[/ — e '] = jsint
w x(1) = e u(r) = x. (1) + x,(£) with

Xe (1) = 2[e ™ u(t) + e“u(-1)]

1
2
Xo(1) = 3le™u(r) — e u(-1)]

even and odd signals 1.38



| x ()

=)
~

1 xe(t)

<)
~

Xo (1)

N—=

o
~

-5e
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Complex signal decomposition
a signal is complex if it has the form x(¢) = x,(¢) + jxim (¢)
Conjugate-symmetric: x(¢) is conjugate-symmetric or Hermitian if
x(t) =x"(-1)
Conjugate-antisymmetric: x(¢) is conjugate-antisymmetric or skew Hermitian if
x(t) = —x"(-1)

= conjugate-symmetric signals have even real part and odd imaginary part
= conjugate-antisymmetric signals have odd real part and even imaginary part

any signal x(#) can be decomposed into

X(l) = xcs(t) + xca(t)
n Xes(1) = %(x(t) + x*(—t)) is the conjugate-symmetric part
n X (F) = %(x(t) — x*(-1)) is the conjugate-antisymmetric part

even and odd signals
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Exercise

determine the conjugate-symmetric and conjugate-antisymmetric components of
(@) xa(t) =e*

(b) xp (1) = je'*

(©) xe () = V2e/ H7IY

even and odd signals
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Signal energy and power

Energy of a signal

E, =/w|x(t)|2dt

00

= finite if [x(7)| —» O as [t| = o
» infinite otherwise

(average) Power of a signal

1 T/2 )
Py = lim — 1)|°dt
e=Jim g [l

= P, is the time average (mean) of |x(7)|?
» VP, is the rms (root-mean-square) value of x(t)

signal energy and power
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Energy and power signals

an energy signal is a signal with finite energy

a power signal is a signal with finite and nonzero power

= an energy signal has zero power
= a power signal has infinite energy

= some signals are neither energy nor power signals

Power of periodic signals: a periodic signal x(z) with period Ty has power

1 1 a0+To
Po=2 [ kPar= = / ()P
TO To TO ao

(not all power signals are periodic)

signal energy and power 1.43



x(1)

energy signal

x(1) power signal

JaVAWA VA INA /\
(VAR VARVER g™

signal energy and power
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Example 1.9

determine if the given signals are energy or power signals and find their energy/power

x(1)
2
Ze—t/Q
-1 o 2 4 t
(@
| "
Z4 —Vz —1 0 i/z i/zt p
-1
(b)

signal energy and power
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Solution:

(@) |x(#)] goes to zero as |t| — o0, hence it is an energy signal with energy

00 0 (e
Ex=/ |x(t)|2dt=/ 4d:+/ deldt=4+4=8
—00 -1 0

and P, =0

(b) |x(t)| does not go to zero as |t| — oo, but it is periodic with period Ty = 2, hence
it is a power signal with power

1 aog+Ty
Pi=— / (1) 2dr
TO ap

I ) 1t 1
= - DPdt=< | tdt=<
5 [ woran= [ tar=

the rms value of this signal is 1/V3 and E, = oo

signal energy and power 1.46



Example 1.10

determine the power and rms value of
(@) x(t) = A cos(wot + 0)
(b) x(t) = Del@o!

Solution
(a) the power is

T/2
Py = lim —/ A? cos®(wot + 0)dt

T—eo T Jor)2
A2 T/2 A2 A2
:Th_rgoﬁ o [1+ cos(2wot + 20)]dt = 7+0: -5

the zero term is because integral over a sinusoid is at most the area over half the
cycle; thus dividing by 7" and letting 7 — oo gives zero

signal energy and power 1.47



(a) alternative solution: we can also integrate over the period Ty = 27/ woq:

1 fTo/2
Py=— A? cos? (wot + 0)dt
To J-1y)2
A2 To/2 A2 A2
= — 1+ 2ot +20)]dt = — +0= —
7 .. o [ o200t + 20)]dr = 5 ’

— second term is zero because the integration of a sinusoid over a period is zero
— the rms value is A/V2

(b)

1 rT/2 . |D|? T/2
Py = lim —/ |De’ 0" |dt = lim —/ dt = |D|?
T=ed Jor)2 Toeo T Jorp

signal energy and power

1.48



Power of sum of two sinusoids

x(t) = Ay cos(wit +01) + As cos(wat + 02)

» if w1 # w2, then the power is
P, = (A} + A3)/2
» if w1 = w2, then the power is

Py = (A7 + A3 +2A1 Az cos(61 — 62))/2

signal energy and power
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Proof:

1 [T/2
P, = lim T / [A1 cos(wit +01) + As cos(wat + 62)]%dt
T /2

1 T/2 1 T/2
= lim = / A? cos*(wit +601)dt + lim T / A3 cos® (wat + 02)dt
-T/2 T - -T/2

2414, T2
+ lim #/ cos(wit + 61) cos(wat + 02)dt
T—eo T Jorpo

A2 A2 24- A T/2
=L 425 qim 22222 / cos(w1t + 01) cos(wot + 02)dt
2 2 T —o00 T -T/2

2 cos(w1t + 61) cos(wat + 62)

= cos((w1 + w2)t + 01 + 03) + cos((w1 — wa)t + 01 — O5)

n third term is zero if w1 # w29

 third termis A1 As cos(01 — 03) if w1 = wo

signal energy and power 1.50



Power of sum of sinusoids

= the power of

x(t) =Ag+ Z A, cos(wpt +6,)

n=1

with diistinct frequencies and w,, # 0 is
a2, 1 = 2
Py=Aj+ s > A
n=1
= the power of

n
x(1) = Z Dy el @kt

k=m

with distinct frequencies is
n
P, = Z |Dk|2
k=m

signal energy and power
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Proof:

1 T/2
P, = lim —/ x(t)x*(t)dt
T J1)2

T —o0
1 T2 G )
= lim — DyDje V@@t gy
TI_I)I;T /T/2 ZZ kL€
k=m {=m

» the integrals of the cross-product terms (when k # £) are finite because the
integrands are periodic signals (made up of sinusoids)

= these terms, when divided by 7" — o0, yield zero

= the remaining terms (k = ¢) yield

T/2 n
Px—Tlggo—/ > IDil?dr = ZleF

T/km

signal energy and power 1.52



Remarks

= in signal processing, when approximating x(¢) by x(2), the erroris defined as
e(t) =x(t) —x(¢)
the energy (or power) of e(t) serves as a measure of the approximation’s quality

= in communication systems, signals can be corrupted by noise during transmission;
the quality of received signal is assessed by signal-to-noise power ratio

= the units of energy and power vary based on the signal type:

— for a voltage signal x(t), the energy E has units of volts squared-seconds (VQS), and
the power P, has units of volts squared

— for a current signal x(#), the units are amperes squared-seconds (Azs) for energy and
amperes squared for power

signal energy and power 1.53



Matlab example

use Matlab to approximate the energy of x(r) = e™* cos(2nt)u(t)
x = @(t) e~ (-t).*cos(2 *pi *t).*u(t);

x_squared = Q(t) x(t).*x(t);

t = 0:0.001:100;

dx=0.001;

Ex = sum(x_squared(t)*dx)

[output: Ex = 0.2567 ]

a better approximation can be obtained with the quad function

Ex = quad(x_squared,0,100)
[output: Ex = 0.2562]

Exercise: use Matlab to confirm that th energy of
y()=x2t+1) +x(-t+1)

is £, = 0.3768

signal energy and power
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