1. Continuous-time signals

- [continuous-time signals](#page-1-0)
- [signal operations](#page-11-0)
- [useful CT signals](#page-24-0)
- [even and odd signals](#page-37-0)
- [signal energy and power](#page-44-0)

Continuous-time signal

a *continuous-time (CT) signal* is a function $x(t)$ defined at every time t

- voltage, current, audio signals
- light intensity variations in an optical fiber
- position or velocity of moving object

a continuous-time function is not the same as *continuous function*

Sinusoids and exponentials

Sinusoids

$$
x(t) = A\cos(2\pi ft + \theta)
$$

- **i** f is the (cyclic) *frequency* (in Hertz); $T = 1/f$ is the *period*
- \blacksquare A is the *amplitude* and θ is the *phase* (in degrees or radians)
- $\omega = 2\pi f = 2\pi/T$ is the *radian frequency*
- other form: $A \sin(\omega t + \theta) = A \cos(\omega t + \theta \pi/2)$

Exponentials

$$
x(t) = Ae^{st} = Ae^{(\sigma + j\omega)t}
$$

$$
= Ae^{\sigma t} (\cos \omega t + j \sin \omega t)
$$

- \bullet $s = \sigma + i\omega$ is called *complex frequency*
- $|\omega|$ is called *radian frequency* or frequency of oscillation
- σ is the *decay rate* or *neper frequency*

Signals in terms of exponentials

- **constant:** $k = ke^{0t}$ ($s = 0$)
- **n** monotonic exponential: $e^{\sigma t}$ ($\omega = 0$)
- sinusoid: $\cos \omega t = \text{Re}(e^{\pm j \omega t}) (\sigma = 0, \ \omega = \pm j \omega)$
- **Exponentially varying sinusoid:** $e^{\sigma t}$ cos ωt $(s = \sigma \pm j\omega)$

Adding sinusoids with same frequency

the **phasor** of the sinusoid $A \cos(\omega t + \theta)$ is the complex number $Ae^{j\theta} = A/\theta$

Adding sinusoids

 adding sinusoids with the *same* frequency can be done via trigonometric identities or *phasors*

$$
A_1 \cos(\omega t + \theta_1) + A_2 \cos(\omega t + \theta_2) = A \cos(\omega t + \theta)
$$

 A and θ can computed by using phasors:

$$
A_1 e^{j\theta_1} + A_2 e^{j\theta_2} = A e^{j\theta}
$$

Example: find $\cos(\omega t + 60^\circ) + 5\cos(\omega t - 30^\circ)$

- we have $e^{j60^o} + 5e^{-j30^o} = 5.099e^{-j18.69^o}$
- **n** therefore,

$$
\cos(\omega t + 60^o) + 5\cos(\omega t - 30^o) = 5.099\cos(\omega t - 18.69^o)
$$

Causal signals

a signal $x(t)$ is *causal* if

$$
x(t) = 0 \quad \text{for } t < 0
$$

- e causal signals do not start before $t = 0$
- **a** signal $x(t)$ is *anticausal* if $x(t) = 0, t \ge 0$
- **a** signal that has value before and after $t = 0$ is called *noncausal*
- a signal that exists over −∞ < < ∞ is called *everlasting signal*

Periodic and aperiodic signals

a signal $x(t)$ is *periodic* if for some positive constant T

 $x(t) = x(t + T)$ for all t

- **s** smallest T is called *(fundamental) period* of $x(t)$, denoted by T_0
- $f_0 = 1/T_0$ is *cyclic frequency*; $\omega_0 = 2\pi f_0$ is *radian frequency*
- a periodic signal must be an everlasting signal
- property: areas under $x(t)$ over any interval of duration T_0 are equal

$$
\int_{a}^{a+T_0} x(t) dt = \int_{b}^{b+T_0} x(t) dt \triangleq \int_{T_0} x(t) dt
$$

a signal is *aperiodic* if it is not periodic

Sum of periodic signals

 $x(t) = x_1(t) + x_2(t)$

- $x_1(t)$ and $x_2(t)$ are is periodic with periods T_{01} and T_{02}
- $\bullet x(t)$ is periodic with period T if T is an integer multiple of T_{01} and T_{02} :

 $qT_{01} = pT_{02}$ for integers p, q

Fundamental period of $x(t)$ is the *least common multiple* (LCM) of T_{01} , T_{02}

$$
T_0 = \text{LCM}(T_{01}, T_{02})
$$

- if T_{01}/T_{02} is a rational number, then $x(t)$ is periodic; otherwise, it is aperiodic
- if $T_{01}/T_{02} = p_0/q_0$ for some integers p_0 and q_0 in **smallest form**, then

$$
T_0 = \text{LCM}(T_{01}, T_{02}) = q_0 T_{01} = p_0 T_{02}
$$

$\frac{1}{\sqrt{3}}$ [continuous-time signals](#page-1-0) $\frac{1}{\sqrt{3}}$. The signal state of $\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$

Example 1.1

- **s** signal $x(t) = 3 + t^2$ is aperiodic
- signal $x(t) = e^{-j60\pi t}$ can be expressed as a sum of two periodic signals

$$
x(t) = \cos(60\pi t) - j\sin(60\pi t)
$$

with the same fundamental period $T_{01} = T_{02} = 2\pi/60\pi = \frac{1}{30}$; thus, $T_0 = \frac{1}{30}$ s

the signal $x(t) = 10 \sin(12\pi t) + 4 \cos(18\pi t)$ is the sum of two periodic functions with $T_{01} = 1/6$ second and $T_{02} = 1/9$ second; we have

$$
T_{01}/T_{02} = \frac{9}{6} = \frac{3}{2} \implies T_0 = \text{LCM}(\frac{1}{6}, \frac{1}{9}) = 2T_{01} = 3T_{02} = 1/3
$$

• the signal $x(t) = 10 \sin(12\pi t) + 4 \cos(18t)$ is the sum of two periodic functions with $T_{01} = 1/6$ second and $T_{02} = \pi/9$ seconds; the ratio $T_{01}/T_{02} = 2\pi/3$ is irrational; therefore $x(t)$ is aperiodic

Piecewise signals

a *piecewise signal* is a function with different expressions over different intervals

Example

Example 1.2

find and sketch $\int_{-\infty}^t x_1(\tau)d\tau$ and $\int_{-\infty}^t x_2(\tau)d\tau$ for the signals $x_1(t)$ and $x_2(t)$

Solution:

Outline

- • [continuous-time signals](#page-1-0)
- **[signal operations](#page-11-0)**
- [useful CT signals](#page-24-0)
- [even and odd signals](#page-37-0)
- [signal energy and power](#page-44-0)

Time shifting

signals can be shifted to the right or left by $t_0 > 0$ seconds:

 $x(t - t_0)$ right-shifted (delayed) signal $x(t + t_0)$ left-shifted (advanced) signal

Example 1.3

$$
x(t) = \begin{cases} e^{-2t} & t \ge 0\\ 0 & t < 0 \end{cases}
$$

sketch and give and expression of $x(t)$ delayed by 1 and advanced by 1

Solution:

Time scaling

time scaling is the compression or expansion of a signal in time:

Example 1.4

sketch and give an expression for $x(t)$ time-compressed by factor 3 and time-expanded by factor 2

Solution:

compressed signal

$$
x_c(t) = x(3t) = \begin{cases} 2 & -1.5 \le 3t < 0 \\ 2e^{-3t/2} & 0 \le 3t < 3 \\ 0 & \text{otherwise} \end{cases}
$$

$$
x_e(t) = x(t/2) = \begin{cases} 2 & -1.5 \le t/2 < 0 \\ 2e^{-t/4} & 0 \le t/2 < 3 \\ 0 & \text{otherwise} \end{cases}
$$

Time reversal

time-reversal is the reflection about the *vertical* axis

 $\phi(t) = x(-t)$

Example 1.5

sketch and mathematically describe $x(-t)$

Solution:

Combined operations

$$
x(\alpha t - t_0) = x\left(\alpha\left(t - \frac{t_0}{\alpha}\right)\right)
$$

1. time shift, then time scale the shifted signal

$$
x(t) \stackrel{\text{time shift by } t_0}{\Longrightarrow} x(t-t_0) \stackrel{\text{time scale by } \alpha}{\Longrightarrow} x(\alpha t - t_0)
$$

2. time scale, then time shift

$$
x(t) \stackrel{\text{time scale by } \alpha}{\implies} x(\alpha t) \stackrel{\text{time shift by } t_0/\alpha}{\implies} x(\alpha t - t_0)
$$

Other form

$$
x\left(\frac{t-t_0}{\alpha}\right)
$$

$$
x(t) \stackrel{\text{time scale by } 1/\alpha}{\implies} x(t/\alpha) \stackrel{\text{time shift by } t_0}{\implies} x\left(\frac{t-t_0}{\alpha}\right)
$$

Example 1.6

sketch $3x(-2t - 1)$ from $x(t)$

Example 1.7

sketch $-2x(\frac{t+2}{4})$ from $x(t)$

Outline

- • [continuous-time signals](#page-1-0)
- [signal operations](#page-11-0)
- **[useful CT signals](#page-24-0)**
- [even and odd signals](#page-37-0)
- [signal energy and power](#page-44-0)

Unit step

 $\mu(t)$ is sometimes defined as

$$
u(t) = \begin{cases} 1 & t > 0 \\ 0.5 & t = 0 \\ 0 & t < 0 \end{cases}
$$

Ĩ,

which is convenient for theoretical purposes

for real-world signals applications however, it makes no practical difference

Unit-step and causal signals

unit-step is useful to describe causal signals

- $e^{-at}u(t)$ is zero for $t < 0$ and e^{-at} for $t \ge 0$
- similarly for $\cos(2\pi t)u(t)$

Unit ramp

$$
\text{ramp}(t) = tu(t) = \begin{cases} t & t > 0 \\ 0 & t \le 0 \end{cases}
$$
\n
$$
= \int_{-\infty}^{t} u(\tau) d\tau
$$

Shifting and reversal of unit step

Shifted step: a step signal equal to K that occurs at $t = a$ is expressed as

Shifted and reversed step: a step signal equal to K for $t < a$ is written as

$$
Ku(a-t) = \begin{cases} K & t < a \\ 0 & t > a \end{cases}
$$

Rectangular pulse

a *rectangular pulse* from t_1 to t_2 can be represented as $u(t - t_1) - u(t - t_2)$

Examples

rectangular pulse from 2 to 4

the *unit rectangle* (unit gate) is defined as

$$
\begin{aligned} \text{rect}(t) &= \Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2}) \\ &= \begin{cases} 1 & -\frac{1}{2} < t < \frac{1}{2} \\ 0, & |t| \ge \frac{1}{2} \end{cases} \end{aligned}
$$

Piecewise functions and unit step

unit step can be used to describe piecewise functions using a single expression

Example

we can describe the signal $x(t)$ by a single expression valid for all t:

$$
x(t) = 2[u(t+1.5) - u(t)] + 2e^{-t/2}[u(t) - u(t-3)]
$$

constant part

$$
= 2u(t+1.5) - 2(1 - e^{-t/2})u(t) - 2e^{-t/2}u(t-3)
$$

Example 1.8

describe the signal $x(t)$ using the unit step function

Solution:

using line equation $x = mt + b$ and unit step functions, the signal can represented as an addition of two components:

$$
x_1(t) = t[u(t) - u(t-2)],
$$
 $x_2(t) = -2(t-3)[u(t-2) - u(t-3)]$

therefore,

$$
x(t) = x_1(t) + x_2(t) = tu(t) - 3(t - 2)u(t - 2) + 2(t - 3)u(t - 3)
$$

[useful CT signals](#page-24-0) $\begin{array}{ccc} \texttt{SIA} & \texttt{SEBIA} & \texttt{SIA} \end{array}$ $\begin{array}{ccc} \texttt{SIA} & \texttt{SEBIA} & \texttt{SIA} \end{array}$ 1.30

Unit impulse

a *unit impulse* or (Dirac's) *delta function* $\delta(t)$ is an idealization of a signal that has unit area, very large near $t = 0$, and very small otherwise

- other forms of approximation can be used such as triangular; the shape is not important but the area is important
- $\delta(t)$ satisfies the property:

$$
\delta(t) = 0
$$
, $t \neq 0$, and $\int_{-\infty}^{\infty} \delta(t) dt = 1$

undefined at $t = 0$ (not mathematically rigorous)

Properties of the impulse function

Product with impulse: for any function $g(t)$ continuous at t_0 ,

$$
g(t)\delta(t-t_0) = g(t_0)\delta(t-t_0)
$$

Sampling (sifting) property

$$
\int_{t_1}^{t_2} g(t)\delta(t - t_0)dt = g(t_0) \qquad t_1 < t_0 < t_2
$$

(here, the impulse is defined as a *generalized function* (distribution), which is a function defined by its effect on other functions)

Scaling property

$$
\delta\big(a(t-t_0)\big) = \frac{1}{|a|}\delta(t-t_0)
$$

Unit impulse and step relation

$$
\frac{d}{dt}u(t-t_0) = \delta(t-t_0) \quad \text{and} \quad u(t-t_0) = \int_{-\infty}^t \delta(\tau - t_0)d\tau
$$

Intuition

a as
$$
a \to 0
$$
 $x(t) \to u(t)$ and $x'(t) \to \delta(t)$

 $\delta(t)$ is called the *generalized derivative* of $u(t)$

The first derivative of the impulse function

- $x(t)$ is an impulse-generating function: $x(t) \rightarrow \delta(t)$ as $\epsilon \rightarrow 0$
- $x'(t)$ is derivative of this impulse-generating function
- $\delta'(t)$ is defined as $x'(t)$ as $\epsilon \to 0$; ($\delta'(t)$ is called a *moment* or *unit doublet* function)
useful CT signals [useful CT signals](#page-24-0) $\begin{array}{ccc} \texttt{SIA} & \texttt{SEBIA} \end{array}$ 1.34

Matlab plotting example

for $x(t) = e^{-t}u(t)$, the following Matlab code plots

$$
y(t) = x(\frac{-t+3}{3}) - (3/4)x(t-1)
$$
 over $-1.5 \le t \le 4.5$

Matlab code

$$
u = \mathfrak{A}(t) 1.0*(t>0);
$$

\n
$$
x = \mathfrak{A}(t) \exp(-t).*(t); y = \mathfrak{A}(t) x((-t+3)/3)-3/4*x(t-1);
$$

\n
$$
t = (-1.5:.0001:4.5); plot(t,y(t),'k');
$$

\n
$$
xlabel('t'); ylabel('y(t)'); grid on;
$$

Outline

- • [continuous-time signals](#page-1-0)
- [signal operations](#page-11-0)
- [useful CT signals](#page-24-0)
- **[even and odd signals](#page-37-0)**
- [signal energy and power](#page-44-0)

Even and odd signals

Even signal: an *even signal* $x_e(t)$ is symmetrical about the vertical axis

$$
x_e(t) = x_e(-t)
$$

Odd signal: an *odd signal* $x_o(t)$ is antisymmetrical about the vertical axis

$$
x_o(t) = -x_o(-t)
$$

Properties

even function \times even function = even function odd function \times odd function = even function even function \times odd function $=$ odd function

Area

for even functions

$$
\int_{-a}^{a} x_e(t)dt = 2 \int_{0}^{a} x_e(t)dt
$$

for odd function

$$
\int_{-a}^{a} x_o(t)dt = 0
$$

(under the assumption that there is no impulse at the origin)

Even and odd decomposition

every signal $x(t)$ can decomposed into an even and odd components:

$$
x(t) = \underbrace{\frac{1}{2}[x(t) + x(-t)]}_{\text{even part}} + \underbrace{\frac{1}{2}[x(t) - x(-t)]}_{\text{odd part}}
$$

Examples

■
$$
e^{jt} = x_e(t) + x_o(t)
$$
 with
\n
$$
x_e(t) = \frac{1}{2} [e^{jt} + e^{-jt}] = \cos t \qquad x_o(t) = \frac{1}{2} [e^{jt} - e^{-jt}] = j \sin t
$$
\n■ $x(t) = e^{-at} u(t) = x_e(t) + x_o(t)$ with
\n
$$
x_e(t) = \frac{1}{2} [e^{-at} u(t) + e^{at} u(-t)]
$$
\n
$$
x_o(t) = \frac{1}{2} [e^{-at} u(t) - e^{at} u(-t)]
$$

Complex signal decomposition

a signal is **complex** if it has the form $x(t) = x_r(t) + jx_{im}(t)$

Conjugate-symmetric: $x(t)$ is *conjugate-symmetric* or *Hermitian* if

 $x(t) = x^*(-t)$

Conjugate-antisymmetric: $x(t)$ is *conjugate-antisymmetric* or *skew Hermitian* if

 $x(t) = -x^*(-t)$

- conjugate-symmetric signals have even real part and odd imaginary part
- conjugate-antisymmetric signals have odd real part and even imaginary part

any signal $x(t)$ can be decomposed into

$$
x(t) = x_{\text{cs}}(t) + x_{\text{ca}}(t)
$$

- $x_{\text{cs}}(t) = \frac{1}{2}(x(t) + x^*(-t))$ is the conjugate-symmetric part
- $x_{\text{ca}}(t) = \frac{1}{2}(x(t) x^*(-t))$ is the conjugate-antisymmetric part

Exercise

determine the conjugate-symmetric and conjugate-antisymmetric components of

(a)
$$
x_a(t) = e^{jt}
$$

\n(b) $x_b(t) = je^{jt}$
\n(c) $x_c(t) = \sqrt{2}e^{j(t + \pi/4)}$

Outline

- • [continuous-time signals](#page-1-0)
- [signal operations](#page-11-0)
- [useful CT signals](#page-24-0)
- [even and odd signals](#page-37-0)
- **[signal energy and power](#page-44-0)**

Signal energy and power

Energy of a signal

$$
E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt
$$

■ finite if
$$
|x(t)| \to 0
$$
 as $|t| \to \infty$

 \blacksquare infinite otherwise

(average) Power of a signal

$$
P_x=\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^2dt
$$

- \blacksquare P_x is the time average (mean) of $|x(t)|^2$
- **i** $\sqrt{P_x}$ is the *rms* (root-mean-square) value of $x(t)$

Energy and power signals

an **energy signal** is a signal with finite energy

a **power signal** is a signal with finite and nonzero power

- an energy signal has zero power
- a power signal has infinite energy
- some signals are neither energy nor power signals

Power of periodic signals: a periodic signal $x(t)$ with period T_0 has power

$$
P_x = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \frac{1}{T_0} \int_{a_0}^{a_0 + T_0} |x(t)|^2 dt
$$

(not all power signals are periodic)

Example 1.9

determine if the given signals are energy or power signals and find their energy/power

Solution:

(a) $|x(t)|$ goes to zero as $|t| \rightarrow \infty$, hence it is an energy signal with energy

$$
E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-1}^{0} 4dt + \int_{0}^{\infty} 4e^{-t} dt = 4 + 4 = 8
$$

and $P_r = 0$

(b) $|x(t)|$ does not go to zero as $|t| \to \infty$, but it is periodic with period $T_0 = 2$, hence it is a power signal with power

$$
P_x = \frac{1}{T_0} \int_{a_0}^{a_0+T_0} |x(t)|^2 dt
$$

= $\frac{1}{2} \int_{-1}^{1} |x(t)|^2 dt = \frac{1}{2} \int_{-1}^{1} t^2 dt = \frac{1}{3}$

the rms value of this signal is $1/$ $\sqrt{3}$ and $E_x = \infty$

Example 1.10

determine the power and rms value of

- (a) $x(t) = A \cos(\omega_0 t + \theta)$
- (b) $x(t) = De^{j\omega_0 t}$

Solution

(a) the power is

$$
P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A^2 \cos^2(\omega_0 t + \theta) dt
$$

=
$$
\lim_{T \to \infty} \frac{A^2}{2T} \int_{-T/2}^{T/2} [1 + \cos(2\omega_0 t + 2\theta)] dt = \frac{A^2}{2} + 0 = \frac{A^2}{2}
$$

the zero term is because integral over a sinusoid is at most the area over half the cycle; thus dividing by T and letting $T \to \infty$ gives zero

(a) alternative solution: we can also integrate over the period $T_0 = 2\pi/\omega_0$:

$$
P_x = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} A^2 \cos^2(\omega_0 t + \theta) dt
$$

= $\frac{A^2}{2T_0} \int_{-T_0/2}^{T_0/2} [1 + \cos(2\omega_0 t + 2\theta)] dt = \frac{A^2}{2} + 0 = \frac{A^2}{2}$

– second term is zero because the integration of a sinusoid over a period is zero $-$ the rms value is $A/\sqrt{2}$

(b)

$$
P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |De^{j\omega_0 t}|^2 dt = \lim_{T \to \infty} \frac{|D|^2}{T} \int_{-T/2}^{T/2} dt = |D|^2
$$

Power of sum of two sinusoids

$$
x(t) = A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2)
$$

if $ω_1 ≠ ω_2$, then the power is

$$
P_x = (A_1^2 + A_2^2)/2
$$

if $\omega_1 = \omega_2$, then the power is

$$
P_x = (A_1^2 + A_2^2 + 2A_1A_2\cos(\theta_1 - \theta_2))/2
$$

Proof:

$$
P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} [A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2)]^2 dt
$$

\n
$$
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A_1^2 \cos^2(\omega_1 t + \theta_1) dt + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A_2^2 \cos^2(\omega_2 t + \theta_2) dt
$$

\n
$$
+ \lim_{T \to \infty} \frac{2A_1 A_2}{T} \int_{-T/2}^{T/2} \cos(\omega_1 t + \theta_1) \cos(\omega_2 t + \theta_2) dt
$$

\n
$$
= \frac{A_1^2}{2} + \frac{A_2^2}{2} + \lim_{T \to \infty} \frac{2A_1 A_2}{T} \int_{-T/2}^{T/2} \cos(\omega_1 t + \theta_1) \cos(\omega_2 t + \theta_2) dt
$$

using

$$
2\cos(\omega_1 t + \theta_1)\cos(\omega_2 t + \theta_2)
$$

= $\cos((\omega_1 + \omega_2)t + \theta_1 + \theta_2) + \cos((\omega_1 - \omega_2)t + \theta_1 - \theta_2)$

- **■** third term is zero if $\omega_1 \neq \omega_2$
- **third term is** $A_1 A_2 \cos(\theta_1 \theta_2)$ if $ω_1 = ω_2$

[signal energy and power](#page-44-0) $\mathbb{S}A$ — EE312 1.50

Power of sum of sinusoids

■ the power of

$$
x(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(\omega_n t + \theta_n)
$$

with *distinct* frequencies and $\omega_n \neq 0$ is

$$
P_x = A_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} A_n^2
$$

■ the power of

$$
x(t) = \sum_{k=m}^{n} D_k e^{j\omega_k t}
$$

with *distinct* frequencies is

$$
P_x = \sum_{k=m}^{n} |D_k|^2
$$

Proof:

$$
P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t) dt
$$

=
$$
\lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k=m}^{n} \sum_{\ell=m}^{n} D_k D_{\ell}^* e^{(j \omega_k - \omega_{\ell}) t} dt
$$

- **the integrals of the cross-product terms (when** $k \neq \ell$ **) are finite because the** integrands are periodic signals (made up of sinusoids)
- **■** these terms, when divided by $T \rightarrow \infty$, yield zero
- the remaining terms $(k = \ell)$ yield

$$
P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k=m}^{n} |D_k|^2 \, dt = \sum_{k=m}^{n} |D_k|^2
$$

Remarks

in signal processing, when approximating $x(t)$ by $\hat{x}(t)$, the *error* is defined as

$$
e(t) = x(t) - \hat{x}(t)
$$

the energy (or power) of $e(t)$ serves as a measure of the approximation's quality

- in communication systems, signals can be corrupted by noise during transmission; the quality of received signal is assessed by signal-to-noise power ratio
- **the units of energy and power vary based on the signal type:**
	- $-$ for a voltage signal $x(t)$, the energy $E_{\scriptscriptstyle \cal X}$ has units of volts squared-seconds ($\rm V^2$ s), and the power P_x has units of volts squared
	- $-$ for a current signal $x(t)$, the units are amperes squared-seconds ($\mathrm{A}^2\mathrm{s}$) for energy and amperes squared for power

Matlab example

use Matlab to approximate the energy of $x(t) = e^{-t} \cos(2\pi t) u(t)$

```
x = 0(t) e^{\hat{ }}(-t) . * cos(2 *pi *t) . *u(t);x_squared = \mathcal{Q}(t) x(t).*x(t);
t = 0:0.001:100:
dx=0.001;
Ex = sum(x_squared(t)*dx)
```

```
[output: Ex = 0.2567 ]
```
a better approximation can be obtained with the quad function

```
Ex = quad(x_squared, 0, 100)
```
 $[$ output: E $x = 0.2562$

Exercise: use Matlab to confirm that th energy of

```
y(t) = x(2t + 1) + x(-t + 1)
```
is $E_v = 0.3768$

[signal energy and power](#page-44-0) states and power states and 1.54

References

- B.P. Lathi, *Linear Systems and Signals*, Oxford University Press, chapter 1 (1.1–1.5)
- M. J. Roberts, *Signals and Systems: Analysis Using Transform Methods and MATLAB*, McGraw Hill, chapter 2